
Bioinformatics Toolbox 2
Reference

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Bioinformatics Toolbox Reference

© COPYRIGHT 2003–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
May 2005 Online only New for Version 2.1 (Release 14SP2+)
September 2005 Online only Revised for Version 2.1.1 (Release 14SP3)
November 2005 Online only Revised for Version 2.2 (Release 14SP3+)
March 2006 Online only Revised for Version 2.2.1 (Release 2006a)
May 2006 Online only Revised for Version 2.3 (Release 2006a+)
September 2006 Online only Revised for Version 2.4 (Release 2006b)
March 2007 Online only Revised for Version 2.5 (Release 2007a)
April 2007 Online only Revised for Version 2.6 (Release 2007a+)

Contents

Functions — By Category

1
Constructor . 1-3

Data Formats and Databases . 1-3

Trace Tools . 1-5

Sequence Conversion . 1-6

Sequence Utilities . 1-7

Sequence Statistics . 1-8

Sequence Visualization . 1-9

Pair-wise Sequence Alignment . 1-10

Multiple Sequence Alignment . 1-10

Scoring Matrices . 1-11

Phylogenetic Tree Tools . 1-11

Graph Theory . 1-12

Gene Ontology . 1-13

Protein Analysis . 1-13

Profile Hidden Markov Models . 1-14

v

Microarray File Formats . 1-15

Microarray Utility . 1-15

Microarray Data Analysis and Visualization 1-16

Microarray Normalization and Filtering 1-17

Statistical Learning . 1-18

Mass Spectrometry File Formats, Preprocessing, and
Visualization . 1-19

Functions — Alphabetical List

2

Methods — By Category

3
Phylogenetic Tree . 3-1

Graph Visualization . 3-2

Gene Ontology . 3-3

vi Contents

Methods — Alphabetical List

4

Objects — Alphabetical List

5

Index

vii

viii Contents

1

Functions — By Category

Constructor (p. 1-3) Create objects

Data Formats and Databases (p. 1-3) Get data into MATLAB® from Web
databases; read and write to files
using specific sequence data formats

Trace Tools (p. 1-5) Read data from SCF file and draw
nucleotide trace plots

Sequence Conversion (p. 1-6) Convert nucleotide and amino
acid sequences between character
and integer formats, reverse and
complement order of nucleotide
bases, and translate nucleotides
codons to amino acids

Sequence Utilities (p. 1-7) Calculate consensus sequence from
set of multiply aligned sequences,
run BLAST search from MATLAB,
and search sequences using regular
expressions

Sequence Statistics (p. 1-8) Determine base counts, nucleotide
density, codon bias, and CpG islands;
search for words and identify open
reading frames (ORFs)

Sequence Visualization (p. 1-9) Visualize sequence data

Pair-wise Sequence Alignment
(p. 1-10)

Compare nucleotide or amino acid
sequences using pair-wise sequence
alignment functions

1 Functions — By Category

Multiple Sequence Alignment
(p. 1-10)

Compare sets of nucleotide or amino
acid sequences; progressively align
sequences using phylogenetic tree
for guidance

Scoring Matrices (p. 1-11) Standard scoring matrices such
as PAM and BLOSUM families of
matrices that alignment functions
use.

Phylogenetic Tree Tools (p. 1-11) Read phylogenetic tree files,
calculate pair-wise distances
between sequences, and build a
phylogenetic tree

Graph Theory (p. 1-12) Apply basic graph theory algorithms
to sparse matrices

Gene Ontology (p. 1-13) Read Gene Ontology formatted files

Protein Analysis (p. 1-13) Determine protein characteristics
and simulate enzyme cleavage
reactions

Profile Hidden Markov Models
(p. 1-14)

Get profile hidden Markov model
data from the PFAM database or
create your own profiles from set of
sequences

Microarray File Formats (p. 1-15) Read data from common microarray
file formats including Affymetrix®

GeneChip®, ImaGene results, and
SPOT files; read GenePix GPR and
GAL files

Microarray Utility (p. 1-15) Using Affymetrix and GeneChip
data sets, get library information for
probe, gene information from probe
set, and probe set values from CEL
and CDF information; show probe
set information from the NetAffx™
Web site and plot probe set values

1-2

Constructor

Microarray Data Analysis and
Visualization (p. 1-16)

Analyze and visualize microarray
data with t tests, spatial plots, box
plots, loglog plots, and intensity-ratio
plots

Microarray Normalization and
Filtering (p. 1-17)

Normalize microarray data with
lowess and mean normalization
functions; filter raw data for cleanup
before analysis

Statistical Learning (p. 1-18) Classify and identify features in
data sets, set up cross-validation
experiments, and compare different
classification methods

Mass Spectrometry File Formats,
Preprocessing, and Visualization
(p. 1-19)

Read data from common mass
spectrometry file formats, preprocess
raw mass spectrometry data from
instruments, and analyze spectra to
identify patterns and compounds

Constructor
biograph Create biograph object

geneont Create geneont object

phytree Create phytree object

Data Formats and Databases
affyprobeseqread Read data file containing probe

sequence information for Affymetrix
GeneChip array

affyread Read microarray data from
Affymetrix GeneChip file

1-3

1 Functions — By Category

agferead Read Agilent Feature Extraction
Software file

blastread Read data from NCBI BLAST report
file

celintensityread Read probe intensities from
Affymetrix CEL files

emblread Read data from EMBL file

fastaread Read data from FASTA file

fastawrite Write to file using FASTA format

galread Read microarray data from GenePix
array list file

genbankread Read data from GenBank file

genpeptread Read data from GenPept file

geosoftread Read Gene Expression Omnibus
(GEO) SOFT format data

getblast Retrieve BLAST report from NCBI
Web site

getembl Sequence information from EMBL
database

getgenbank Sequence information from GenBank
database

getgenpept Retrieve sequence information from
GenPept database

getgeodata Retrieve Gene Expression Omnibus
(GEO) Sample (GSM) data

gethmmalignment Retrieve multiple sequence
alignment associated with hidden
Markov model (HMM) profile from
PFAM database

gethmmprof Retrieve hidden Markov model
(HMM) profile from PFAM database

1-4

Trace Tools

gethmmtree Phylogenetic tree data from PFAM
database

getpdb Retrieve protein structure data from
Protein Data Bank (PDB) database

gprread Read microarray data from GenePix
Results (GPR) file

imageneread Read microarray data from ImaGene
Results file

jcampread Read JCAMP-DX formatted files

multialignread Read multiple-sequence alignment
file

mzxmlread Read mzXML file into MATLAB as
structure

pdbread Read data from Protein Data Bank
(PDB) file

pdbwrite Write to file using Protein Data
Bank (PDB) format

pfamhmmread Read data from PFAM-HMM file

phytreeread Read phylogenetic tree file

phytreewrite Write phylogenetic tree object to
Newick-formatted file

scfread Read trace data from SCF file

sptread Read data from SPOT file

Trace Tools
scfread Read trace data from SCF file

traceplot Draw nucleotide trace plots

1-5

1 Functions — By Category

Sequence Conversion
aa2int Convert amino acid sequence from

letter to integer representation

aa2nt Convert amino acid sequence to
nucleotide sequence

aminolookup Find amino acid codes, integers,
abbreviations, names, and codons

baselookup Nucleotide codes, abbreviations, and
names

dna2rna Convert DNA sequence to RNA
sequence

int2aa Convert amino acid sequence from
integer to letter representation

int2nt Convert nucleotide sequence from
integer to letter representation

nt2aa Convert nucleotide sequence to
amino acid sequence

nt2int Convert nucleotide sequence from
letter to integer representation

rna2dna Convert RNA sequence of nucleotides
to DNA sequence

seq2regexp Convert sequence with ambiguous
characters to regular expression

seqcomplement Calculate complementary strand of
nucleotide sequence

seqrcomplement Calculate reverse complement of
nucleotide sequence

seqreverse Reverse letters or numbers in
nucleotide sequence

1-6

Sequence Utilities

Sequence Utilities
aminolookup Find amino acid codes, integers,

abbreviations, names, and codons

baselookup Nucleotide codes, abbreviations, and
names

blastncbi Create remote NCBI BLAST report
request ID

cleave Cleave amino acid sequence with
enzyme

evalrasmolscript Send RasMol script commands to
Molecule Viewer window

featuresparse Parse features from GenBank,
GenPept, or EMBL data

geneticcode Nucleotide codon to amino acid
mapping

joinseq Join two sequences to produce
shortest supersequence

molviewer Display and manipulate 3-D
molecule structure

oligoprop Calculate sequence properties of
DNA oligonucleotide

palindromes Find palindromes in sequence

pdbdistplot Visualize intermolecular distances
in Protein Data Bank (PDB) file

proteinplot Characteristics for amino acid
sequences

proteinpropplot Plot properties of amino acid
sequence

ramachandran Draw Ramachandran plot for Protein
Data Bank (PDB) data

1-7

1 Functions — By Category

randseq Generate random sequence from
finite alphabet

rebasecuts Find restriction enzymes that cut
protein sequence

restrict Split nucleotide sequence at
restriction site

revgeneticcode Reverse mapping for genetic code

seqconsensus Calculate consensus sequence

seqdisp Format long sequence output for
easy viewing

seqinsertgaps Insert gaps into nucleotide or amino
acid sequence

seqlogo Display sequence logo for nucleotide
or amino acid sequences

seqmatch Find matches for every string in
library

seqprofile Calculate sequence profile from set
of multiply aligned sequences

seqshoworfs Display open reading frames in
sequence

Sequence Statistics
aacount Count amino acids in sequence

aminolookup Find amino acid codes, integers,
abbreviations, names, and codons

basecount Count nucleotides in sequence

baselookup Nucleotide codes, abbreviations, and
names

1-8

Sequence Visualization

codonbias Calculate codon frequency for each
amino acid in DNA sequence

codoncount Count codons in nucleotide sequence

cpgisland Locate CpG islands in DNA sequence

dimercount Count dimers in sequence

isoelectric Estimate isoelectric point for amino
acid sequence

molweight Calculate molecular weight of amino
acid sequence

nmercount Count number of n-mers in
nucleotide or amino acid sequence

ntdensity Plot density of nucleotides along
sequence

seqshowwords Graphically display words in
sequence

seqwordcount Count number of occurrences of word
in sequence

Sequence Visualization
featuresmap Draw linear or circular map of

features from GenBank structure

seqtool Open tool to interactively explore
biological sequences

1-9

1 Functions — By Category

Pair-wise Sequence Alignment
fastaread Read data from FASTA file

nwalign Globally align two sequences using
Needleman-Wunsch algorithm

seqdotplot Create dot plot of two sequences

showalignment Sequence alignment with color

swalign Locally align two sequences using
Smith-Waterman algorithm

Multiple Sequence Alignment
fastaread Read data from FASTA file

multialign Align multiple sequences using
progressive method

multialignread Read multiple-sequence alignment
file

multialignviewer Open viewer for multiple sequence
alignments

profalign Align two profiles using
Needleman-Wunsch global
alignment

seqpdist Calculate pair-wise distance between
sequences

showalignment Sequence alignment with color

1-10

Scoring Matrices

Scoring Matrices
blosum BLOSUM scoring matrix

dayhoff Dayhoff scoring matrix

gonnet Gonnet scoring matrix

nuc44 NUC44 scoring matrix for nucleotide
sequences

pam PAM scoring matrix

Phylogenetic Tree Tools
dnds Estimate synonymous and

nonsynonymous substitution
rates

dndsml Estimate synonymous and
nonsynonymous substitution
rates using maximum likelihood
method

gethmmtree Phylogenetic tree data from PFAM
database

phytreeread Read phylogenetic tree file

phytreetool View, edit, and explore phylogenetic
tree data

phytreewrite Write phylogenetic tree object to
Newick-formatted file

seqinsertgaps Insert gaps into nucleotide or amino
acid sequence

seqlinkage Construct phylogenetic tree from
pair-wise distances

1-11

1 Functions — By Category

seqneighjoin Neighbor-joining method for
phylogenetic tree reconstruction

seqpdist Calculate pair-wise distance between
sequences

Graph Theory
graphallshortestpaths Find all shortest paths in graph

graphconncomp Find strongly or weakly connected
components in graph

graphisdag Test for cycles in directed graph

graphisomorphism Find isomorphism between two
graphs

graphisspantree Determine if tree is spanning tree

graphmaxflow Calculate maximum flow and
minimum cut in directed graph

graphminspantree Find minimal spanning tree in graph

graphpred2path Convert predecessor indices to paths

graphshortestpath Solve shortest path problem in graph

graphtopoorder Perform topological sort of directed
acyclic graph

graphtraverse Traverse graph by following adjacent
nodes

1-12

Gene Ontology

Gene Ontology
goannotread Annotations from Gene Ontology

annotated file

num2goid Convert numbers to Gene Ontology
IDs

Protein Analysis
aacount Count amino acids in sequence

aminolookup Find amino acid codes, integers,
abbreviations, names, and codons

atomiccomp Calculate atomic composition of
protein

cleave Cleave amino acid sequence with
enzyme

evalrasmolscript Send RasMol script commands to
Molecule Viewer window

isoelectric Estimate isoelectric point for amino
acid sequence

molviewer Display and manipulate 3-D
molecule structure

molweight Calculate molecular weight of amino
acid sequence

pdbdistplot Visualize intermolecular distances
in Protein Data Bank (PDB) file

proteinplot Characteristics for amino acid
sequences

proteinpropplot Plot properties of amino acid
sequence

1-13

1 Functions — By Category

ramachandran Draw Ramachandran plot for Protein
Data Bank (PDB) data

rebasecuts Find restriction enzymes that cut
protein sequence

Profile Hidden Markov Models
gethmmalignment Retrieve multiple sequence

alignment associated with hidden
Markov model (HMM) profile from
PFAM database

gethmmprof Retrieve hidden Markov model
(HMM) profile from PFAM database

gethmmtree Phylogenetic tree data from PFAM
database

hmmprofalign Align query sequence to profile using
hidden Markov model alignment

hmmprofestimate Estimate profile Hidden Markov
Model (HMM) parameters using
pseudocounts

hmmprofgenerate Generate random sequence drawn
from profile Hidden Markov Model
(HMM)

hmmprofmerge Concatenate prealigned strings of
several sequences to profile Hidden
Markow Model (HMM)

hmmprofstruct Create profile Hidden Markov Model
(HMM) structure

pfamhmmread Read data from PFAM-HMM file

showhmmprof Plot Hidden Markov Model (HMM)
profile

1-14

Microarray File Formats

Microarray File Formats
affyprobeseqread Read data file containing probe

sequence information for Affymetrix
GeneChip array

affyread Read microarray data from
Affymetrix GeneChip file

agferead Read Agilent Feature Extraction
Software file

celintensityread Read probe intensities from
Affymetrix CEL files

galread Read microarray data from GenePix
array list file

geosoftread Read Gene Expression Omnibus
(GEO) SOFT format data

getgeodata Retrieve Gene Expression Omnibus
(GEO) Sample (GSM) data

gprread Read microarray data from GenePix
Results (GPR) file

imageneread Read microarray data from ImaGene
Results file

sptread Read data from SPOT file

Microarray Utility
magetfield Extract data from microarray

structure

probelibraryinfo Create table of probe set library
information

probesetlink Display probe set information on
NetAffx Web site

1-15

1 Functions — By Category

probesetlookup Look up information for probe set

probesetplot Plot Affymetrix probe set intensity
values

probesetvalues Create table of Affymetrix probe set
intensity values

Microarray Data Analysis and Visualization
clustergram Create dendrogram and heat map

maboxplot Box plot for microarray data

mafdr Estimate false discovery rate (FDR)
of differentially expressed genes
from two experimental conditions or
phenotypes

maimage Spatial image for microarray data

mairplot Create intensity versus ratio scatter
plot of microarray data

maloglog Create loglog plot of microarray data

mapcaplot Create Principal Component
Analysis plot of microarray data

mattest Perform two-tailed t-test to evaluate
differential expression of genes
from two experimental conditions or
phenotypes

mavolcanoplot Create significance versus gene
expression ratio (fold change) scatter
plot of microarray data

redgreencmap Create red and green color map

1-16

Microarray Normalization and Filtering

Microarray Normalization and Filtering
affyinvarsetnorm Perform rank invariant set

normalization on probe intensities
from multiple Affymetrix CEL or
DAT files

affyprobeaffinities Compute Affymetrix probe affinities
from their sequences and MM probe
intensities

exprprofrange Calculate range of gene expression
profiles

exprprofvar Calculate variance of gene
expression profiles

gcrma Perform GC Robust Multi-array
Average (GCRMA) background
adjustment, quantile normalization,
and median-polish summarization
on Affymetrix microarray probe-level
data

gcrmabackadj Perform GC Robust Multi-array
Average (GCRMA) background
adjustment on Affymetrix
microarray probe-level data
using sequence information

geneentropyfilter Remove genes with low entropy
expression values

genelowvalfilter Remove gene profiles with low
absolute values

generangefilter Remove gene profiles with small
profile ranges

genevarfilter Filter genes with small profile
variance

1-17

1 Functions — By Category

mainvarsetnorm Perform rank invariant set
normalization on gene expression
values from two experimental
conditions or phenotypes

malowess Smooth microarray data using
Lowess method

manorm Normalize microarray data

quantilenorm Quantile normalization over
multiple arrays

rmabackadj Perform background adjustment on
Affymetrix microarray probe-level
data using Robust Multi-array
Average (RMA) procedure

rmasummary Calculate gene (probe set) expression
values from Affymetrix microarray
probe-level data using Robust
Multi-array Average (RMA)
procedure

zonebackadj Perform background adjustment on
Affymetrix microarray probe-level
data using zone-based method

Statistical Learning
classperf Evaluate performance of classifier

crossvalind Generate cross-validation indices

knnclassify Classify data using nearest neighbor
method

knnimpute Impute missing data using
nearest-neighbor method

optimalleaforder Determine optimal leaf ordering for
hierarchical binary cluster tree

1-18

Mass Spectrometry File Formats, Preprocessing, and Visualization

randfeatures Generate randomized subset of
features

rankfeatures Rank key features by class
separability criteria

samplealign Align two data sets containing
sequential observations by
introducing gaps

svmclassify Classify data using support vector
machine

svmsmoset Create or edit Sequential Minimal
Optimization (SMO) options
structure

svmtrain Train support vector machine
classifier

Mass Spectrometry File Formats, Preprocessing, and
Visualization

jcampread Read JCAMP-DX formatted files

msalign Align peaks in mass spectrum to
reference peaks

msbackadj Correct baseline of mass spectrum

msdotplot Plot set of peak lists from LC/MS or
GC/MS data set

msheatmap Create pseudocolor image of set of
mass spectra

mslowess Smooth mass spectrum using
nonparametric method

msnorm Normalize set of mass spectra

1-19

1 Functions — By Category

mspalign Align mass spectra from multiple
peak lists from LC/MS or GC/MS
data set

mspeaks Convert raw mass spectrometry data
to peak list (centroided data)

msppresample Resample mass spectrometry signal
while preserving peaks

msresample Resample mass spectrometry signal

mssgolay Smooth mass spectrum with
least-squares polynomial

msviewer Explore mass spectrum or set of
mass spectra

mzxml2peaks Convert mzXML structure to peak
list

mzxmlread Read mzXML file into MATLAB as
structure

samplealign Align two data sets containing
sequential observations by
introducing gaps

1-20

2

Functions — Alphabetical
List

aa2int

Purpose Convert amino acid sequence from letter to integer representation

Syntax SeqInt = aa2int(SeqChar)

Arguments SeqChar Either of the following:
• Character string of single-letter codes specifying an

amino acid sequence. See the table Mapping Amino
Acid Letters to Integers on page 2-2 for valid codes.
Unknown characters are mapped to 0. Integers are
arbitrarily assigned to IUB/IUPAC letters.

• Structure containing a Sequence field that contains an
amino acid sequence, such as returned by fastaread,
getembl, getgenpept, or getpdb.

Return
Values

SeqInt Row vector of integers specifying an amino acid sequence.

Mapping Amino Acid Letters to Integers

Amino Acid Code Integer

Alanine A 1

Arginine R 2

Asparagine N 3

Aspartic acid (Aspartate) D 4

Cysteine C 5

Glutamine Q 6

Glutamic acid (Glutamate) E 7

Glycine G 8

Histidine H 9

2-2

aa2int

Amino Acid Code Integer

Isoleucine I 10

Leucine L 11

Lysine K 12

Methionine M 13

Phenylalanine F 14

Proline P 15

Serine S 16

Threonine T 17

Tryptophan W 18

Tyrosine Y 19

Valine V 20

Asparagine or Aspartic acid (Aspartate) B 21

Glutamine or Glutamic acid (Glutamate) Z 22

Any amino acid X 23

Translation stop * 24

Gap of indeterminate length - 25

Unknown or any character or symbol not
in table

? 0

Description SeqInt = aa2int(SeqChar) converts SeqChar, a string of single-letter
codes specifying an amino acid sequence, to SeqInt, a 1-by-N array
of integers specifying the same amino acid sequence. See the table
Mapping Amino Acid Letters to Integers on page 2-2 for valid codes.

Examples Converting a Simple Sequence

Convert the sequence of letters MATLAB to integers.

2-3

aa2int

SeqInt = aa2int('MATLAB')

SeqInt =

13 1 17 11 1 21

Converting a Random Sequence

Convert a random amino acid sequence of letters to integers.

1 Create a random character string to represent an amino acid
sequence.

SeqChar = randseq(20, 'alphabet', 'amino')

SeqChar =

dwcztecakfuecvifchds

2 Convert the amino acid sequence from letter to integer representation.

SeqInt = aa2int(SeqChar)

SeqInt =

Columns 1 through 13
4 18 5 22 17 7 5 1 12 14 0 7 5

Columns 14 through 20
20 10 14 5 9 4 16

See Also Bioinformatics Toolbox functions: aminolookup, int2aa, int2nt,
nt2int

2-4

aa2nt

Purpose Convert amino acid sequence to nucleotide sequence

Syntax SeqNT = aa2nt(SeqAA)
aa2nt(..., 'PropertyName', PropertyValue,...)
aa2nt(..., 'GeneticCode', GeneticCodeValue)
aa2nt(..., 'Alphabet' AlphabetValue)

Arguments SeqAA Amino acid sequence. Enter a character
string or a vector of integers from the table.
Examples: 'ARN' or [1 2 3]

GeneticCodeValue Property to select a genetic code. Enter a code
number or code name from the Genetic Code on
page 2-5 table below. If you use a code name,
you can truncate the name to the first two
characters of the name.

AlphabetValue Property to select a nucleotide alphabet. Enter
either 'DNA' or 'RNA'. The default value is
'DNA', which uses the symbols A, C, T, G. The
value 'RNA' uses the symbols A, C, U, G.

Genetic Code

Code
Number

Code Name Code
Number

Code Name

1 Standard 12 Alternative Yeast
Nuclear

2 Vertebrate
Mitochondrial

13 Ascidian
Mitochondrial

3 Yeast Mitochondrial 14 Flatworm
Mitochondrial

2-5

aa2nt

Code
Number

Code Name Code
Number

Code Name

4 Mold, Protozoan,
Coelenterate
Mitochondrial,
and Mycoplasma
/Spiroplasma

15 Blepharisma Nuclear

5 Invertebrate
Mitochondrial

16 Chlorophycean
Mitochondrial

6 Ciliate, Dasycladacean,
and Hexamita Nuclear

21 Trematode
Mitochondrial

9 Echinoderm
Mitochondrial

22 Scenedesmus Obliquus
Mitochondrial

10 Euplotid Nuclear 23 Thraustochytrium
Mitochondrial

11 Bacterial and Plant
Plastid

Description SeqNT = aa2nt(SeqAA) converts an amino acid sequence (SeqAA) to
a nucleotide sequence (SeqNT) using the standard genetic code. In
general, the mapping from an amino acid to a nucleotide codon is not
a one-to-one mapping. For amino acids with more than one possible
nucleotide codon, this function selects randomly a codon corresponding
to that particular amino acid.

For the ambiguous characters B and Z, one of the amino acids
corresponding to the letter is selected randomly, and then a codon
sequence is selected randomly. For the ambiguous character X, a codon
sequence is selected randomly from all possibilities.

aa2nt(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

2-6

aa2nt

aa2nt(..., 'GeneticCode', GeneticCodeValue) selects a genetic
code (GeneticCodeValue) to use when converting an amino acid
sequence (SeqAA) to a nucleotide sequence (SeqNT).

aa2nt(..., 'Alphabet' AlphabetValue) selects a nucleotide
alphabet (AlphabetValue).

Standard Genetic Code

Amino Acid Amino Acid

Alanine (A) GCT, GCC, GCA,
GCG

Phenylalanine
(F)

TTT, TTC

Arginine (R) CGT, CGC, CGA,
CGG, AGA, AGG

Proline (P) CCT, CCC,
CCA, CCG

Asparagine
(N)

ATT, AAC Serine (S) TCT, TCC,
TCA,TCG, AGT,
AGC

Aspartic
acid
(Aspartate,
D)

GAT, GAC Threonine (T) ACT, ACC,
ACA, ACG

Cysteine (C) TGT, TGC Tryptophan
(W)

TGG

Glutamine
(Q)

CAA, CAG Tyrosine (Y) TAT, TAC

Glutamic
acid
(Glutamate,
E)

GAA, GAG Valine (V) GTT, GTC,
GTA, GTG

Glycine (G) GGT, GGC, GGA,
GGG

Aspartic acid
or Asparagine

B—random
codon from D
and N

2-7

aa2nt

Amino Acid Amino Acid

Histidine
(H)

CAT, CAC Glutamic acid
or Glutamine

Z—random
codon from E
and Q

Isoleucine
(I)

ATT, ATC, ATA Unknown or
any amino acid

X random
codon

Leucine (L) TTA, TTG, CTT,
CTC, CTA, CTG

Translation
stop (*)

TAA, TAG, TGA

Lysine (K) AAA, AAG Gap of
indeterminate
length (-)

Methionine
(M)

ATG Any character
or any symbol
not in table (?)

???

Examples 1 Convert an amino acid sequence to a nucleotide sequence using the
standard genetic code.

aa2nt('MATLAB')

Warning: The sequence contains ambiguous characters.
ans =
ATGGCAACCCTGGCGAAT

2 Use the Vertebrate Mitochondrial genetic code.

aa2nt('MATLAP', 'GeneticCode', 2)

ans =
ATGGCAACTCTAGCGCCT

3 Use the genetic code for the Echinoderm Mitochondrial RNA
alphabet.

2-8

aa2nt

aa2nt('MATLAB','GeneticCode','ec','Alphabet','RNA')

Warning: The sequence contains ambiguous characters.
ans =
AUGGCUACAUUGGCUGAU

4 Convert a sequence with the ambiguous amino acid character B.

aa2nt('abcd')

Warning: The sequence contains ambiguous characters.
ans =
GCCACATGCGAC

See Also Bioinformatics Toolbox functions: geneticcode, nt2aa,
revgeneticcode, seqtool

MATLAB function: rand

2-9

aacount

Purpose Count amino acids in sequence

Syntax Amino = aacount(SeqAA)
aacount(..., 'PropertyName', PropertyValue,...)
aacount(..., 'Chart', ChartValue)
aacount(..., 'Others', OthersValue)
aacount(..., 'Structure', StructureValue)

Arguments
SeqAA Amino acid sequence. Enter a character string

or vector of integers from the table. Examples:
'ARN' or [1 2 3]. You can also enter a structure
with the field Sequence.

ChartValue Property to select a type of plot. Enter either
'pie' or 'bar'.

OthersValue Property to control the counting of ambiguous
characters individually. Enter either 'full' or
'bundle'(default).

StructureValue Property to control blocking the unknown
characters warning and to not count unknown
characters.

Description Amino = aacount(SeqAA) counts the type and number of amino acids
in an amino acid sequence (SeqAA) and returns the counts in a 1-by-1
structure (Amino) with fields for the standard 20 amino acids (A R N D
C Q E G H I L K M F P S T W Y V).

• If a sequence contains amino acids with ambiguous characters (B, Z,
X), the stop character (*), or gaps indicated with a hyphen (-), the field
Others is added to the structure and a warning message is displayed.

Warning: Symbols other than the standard 20 amino acids
appear in the sequence.

2-10

aacount

• If a sequence contains any characters other than the 20 standard
amino acids, ambiguous characters, stop, and gap characters, the
characters are counted in the field Others and a warning message is
displayed.

Warning: Sequence contains unknown characters. These will
be ignored.

• If the property Others = 'full' , this function lists the ambiguous
characters separately, asterisks are counted in a new field (Stop),
and hyphens are counted in a new field (Gap).

aacount(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs:

aacount(..., 'Chart', ChartValue) creates a chart showing the
relative proportions of the amino acids.

aacount(..., 'Others', OthersValue), when OthersValue is
'full'', counts the ambiguous amino acid characters individually
instead of adding them together in the field Others.

aacount(..., 'Structure', StructureValue), when
StructureValue is 'full', blocks the unknown characters warning
and ignores counting unknown characters.

• aacount(SeqAA) — Display 20 amino acids, and only if there are
ambiguous and unknown characters, add an Others field with the
counts.

• aacount(SeqAA, 'Others', 'full') — Display 20 amino acids, 3
ambiguous amino acids, stops, gaps, and only if there are unknown
characters, add an Others field with the unknown counts.

• aacount(SeqAA, 'Structure', 'full') — Display 20 amino
acids and always display an Others field. If there are ambiguous
and unknown characters, add counts to the Others field; otherwise
display 0.

2-11

aacount

• aacount(SeqAA, 'Others', 'full', 'Structure', 'full') —
Display 20 amino acids, 3 ambiguous amino acids, stops, gaps, and
Others field. If there are unknown characters, add counts to the
Others field otherwise display 0.

Examples 1 Create a sequence.

Seq = aacount('MATLAB')

2 Count the amino acids in the sequence.

AA = aacount(Seq)

Warning: Symbols other than the standard 20 amino acids appear
in the sequence.
AA =

A: 2
R: 0
N: 0
D: 0
C: 0
Q: 0
E: 0
G: 0
H: 0
I: 0
L: 1
K: 0
M: 1
F: 0
P: 0
S: 0
T: 1
W: 0
Y: 0
V: 0

Others: 1

2-12

aacount

3 Get the count for alanine (A) residues.

AA.A
ans =

2

See Also Bioinformatics Toolbox functions aminolookup, atomiccomp, basecount,
codoncount, dimercount, isoelectric, molweight, proteinplot,
seqtool

2-13

affyinvarsetnorm

Purpose Perform rank invariant set normalization on probe intensities from
multiple Affymetrix CEL or DAT files

Syntax NormData = affyinvarsetnorm(Data)
[NormData, MedStructure] = affyinvarsetnorm(Data)
... affyinvarsetnorm(..., 'Baseline', BaselineValue, ...)
... affyinvarsetnorm(..., 'Thresholds',
ThresholdsValue, ...)
... affyinvarsetnorm(..., 'StopPrctile',
StopPrctileValue, ...)
... affyinvarsetnorm(..., 'RayPrctile',
RayPrctileValue, ...)
... affyinvarsetnorm(..., 'Method', MethodValue, ...)
... affyinvarsetnorm(..., 'Showplot', ShowplotValue, ...)

Arguments
Data Matrix of intensity values where each row

corresponds to a perfect match (PM) probe
and each column corresponds to an Affymetrix
CEL or DAT file. (Each CEL or DAT file is
generated from a separate chip. All chips
should be of the same type.)

MedStructure Structure of each column’s intensity median
before and after normalization, and the index
of the column chosen as the baseline.

BaselineValue Property to control the selection of the column
index N from Data to be used as the baseline
column. Default is the column index whose
median intensity is the median of all the
columns.

2-14

affyinvarsetnorm

ThresholdsValue Property to set the thresholds for the lowest
average rank and the highest average rank,
which are used to determine the invariant set.
The rank invariant set is a set of data points
whose proportional rank difference is smaller
than a given threshold. The threshold for
each data point is determined by interpolating
between the threshold for the lowest average
rank and the threshold for the highest average
rank. Select these two thresholds empirically
to limit the spread of the invariant set, but
allow enough data points to determine the
normalization relationship.

ThresholdsValue is a 1-by-2 vector [LT,
HT] where LT is the threshold for the lowest
average rank and HT is threshold for the
highest average rank. Values must be between
0 and 1. Default is [0.05, 0.005].

StopPrctileValue Property to stop the iteration process when
the number of data points in the invariant set
reaches N percent of the total number of data
points. Default is 1.

Note If you do not use this property, the
iteration process continues until no more data
points are eliminated.

RayPrctileValue Property to select the N percentage of the
highest ranked invariant set of data points to
fit a straight line through, while the remaining
data points are fitted to a running median
curve. The final running median curve is a
piece-wise linear curve. Default is 1.5.

2-15

affyinvarsetnorm

MethodValue Property to select the smoothing method used
to normalize the data. Enter 'lowess' or
'runmedian'. Default is 'lowess'.

ShowplotValue Property to control the plotting of two pairs of
scatter plots (before and after normalization).
The first pair plots baseline data versus data
from a specified column (chip) from the matrix
Data. The second is a pair of M-A scatter plots,
which plots M (ratio between baseline and
sample) versus A (the average of the baseline
and sample). Enter either 'all' (plot a pair of
scatter plots for each column or chip) or specify
a subset of columns (chips) by entering the
column number(s) or a range of numbers.

For example:

• ..., 'Showplot', 3, ...) plots data
from column 3.

• ..., 'Showplot', [3,5,7], ...) plots
data from columns 3, 5, and 7.

• ... , 'Showplot', 3:9, ...) plots
data from columns 3 to 9.

Description NormData = affyinvarsetnorm(Data) normalizes the values in each
column (chip) of probe intensities in Data to a baseline reference, using
the invariant set method. NormData is a matrix of normalized probe
intensities from Data.

Specifically, affyinvarsetnorm:

• Selects a baseline index, typically the column whose median intensity
is the median of all the columns.

2-16

affyinvarsetnorm

• For each column, determines the proportional rank difference (prd)
for each pair of ranks, RankX and RankY, from the sample column
and the baseline reference.

prd = abs(RankX - RankY)

• For each column, determines the invariant set of data points by
selecting data points whose proportional rank differences (prd) are
below threshold, which is a predetermined threshold for a given
data point (defined by the ThresholdsValue property). It repeats
the process until either no more data points are eliminated, or a
predetermined percentage of data points is reached.

The invariant set is data points with a prd < threshold.

• For each column, uses the invariant set of data points to calculate
the lowess or running median smoothing curve, which is used to
normalize the data in that column.

[NormData, MedStructure] = affyinvarsetnorm(Data) also returns
a structure of the index of the column chosen as the baseline and each
column’s intensity median before and after normalization.

Note If Data contains NaN values, then NormData will also contain
NaN values at the corresponding positions.

... affyinvarsetnorm(..., 'PropertyName',
PropertyValue, ...) defines optional properties that use property
name/value pairs in any order. These property name/value pairs are
as follows:

... affyinvarsetnorm(..., 'Baseline', BaselineValue, ...)
lets you select the column index N from Data to be the baseline column.
Default is the index of the column whose median intensity is the median
of all the columns.

2-17

affyinvarsetnorm

... affyinvarsetnorm(..., 'Thresholds',
ThresholdsValue, ...) sets the thresholds for the lowest average
rank and the highest average rank, which are used to determine the
invariant set. The rank invariant set is a set of data points whose
proportional rank difference is smaller than a given threshold. The
threshold for each data point is determined by interpolating between
the threshold for the lowest average rank and the threshold for the
highest average rank. Select these two thresholds empirically to
limit the spread of the invariant set, but allow enough data points to
determine the normalization relationship.

ThresholdsValue is a 1-by-2 vector [LT, HT] where LT is the threshold
for the lowest average rank and HT is threshold for the highest average
rank. Values must be between 0 and 1. Default is [0.05, 0.005].

... affyinvarsetnorm(..., 'StopPrctile',
StopPrctileValue, ...) stops the iteration process when the number
of data points in the invariant set reaches N percent of the total number
of data points. Default is 1.

Note If you do not use this property, the iteration process continues
until no more data points are eliminated.

... affyinvarsetnorm(..., 'RayPrctile',
RayPrctileValue, ...) selects the N percentage of the highest ranked
invariant set of data points to fit a straight line through, while the
remaining data points are fitted to a running median curve. The final
running median curve is a piece-wise linear curve. Default is 1.5.

... affyinvarsetnorm(..., 'Method', MethodValue, ...) selects
the smoothing method for normalizing the data. When MethodValue
is 'lowess', affyinvarsetnorm uses the lowess method. When
MethodValue is 'runmedian', affyinvarsetnorm uses the running
median method. Default is 'lowess'.

... affyinvarsetnorm(..., 'Showplot', ShowplotValue, ...)
plots two pairs of scatter plots (before and after normalization). The

2-18

affyinvarsetnorm

first pair plots baseline data versus data from a specified column
(chip) from the matrix Data. The second is a pair of M-A scatter
plots, which plots M (ratio between baseline and sample) versus A
(the average of the baseline and sample). When ShowplotValue is
'all', affyinvarsetnorm plots a pair of scatter plots for each column
or chip. When ShowplotValue is a number(s) or range of numbers,
affyinvarsetnorm plots a pair of scatter plots for the indicated column
numbers (chips).

For example:

• ..., 'Showplot', 3) plots the data from column 3 of Data.

• ..., 'Showplot', [3,5,7]) plots the data from columns 3, 5,
and 7 of Data.

• ..., 'Showplot', 3:9) plots the data from columns 3 to 9 of Data.

2-19

affyinvarsetnorm

Examples 1 Load a MAT file, included with Bioinformatics Toolbox, which
contains Affymetrix data variables, including pmMatrix, a matrix of
PM probe intensity values from multiple CEL files.

load prostatecancerrawdata

2 Normalize the data in pmMatrix, using the affyinvarsetnorm
function.

2-20

affyinvarsetnorm

NormMatrix = affyinvarsetnorm(pmMatrix);

The prostatecancerrawdata.mat file used in the previous example
contains data from Best et al., 2005.

References [1] Li, C., and Wong, W.H. (2001). Model-based analysis of
oligonucleotide arrays: model validation, design issues and standard
error application. Genome Biology 2(8): research0032.1-0032.11.

[2] http://biosun1.harvard.edu/complab/dchip/normalizing%20arrays.htm#isn

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R.,
Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea,
M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik,
R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F.
(2005). Molecular alterations in primary prostate cancer after androgen
ablation therapy. Clinical Cancer Research 11, 6823-6834.

See Also affyread, celintensityread, mainvarsetnorm, malowess, manorm,
quantilenorm, rmabackadj, rmasummary

2-21

http://biosun1.harvard.edu/complab/dchip/normalizing%20arrays.htm#isn

affyprobeaffinities

Purpose Compute Affymetrix probe affinities from their sequences and MM
probe intensities

Syntax [AffinPM, AffinMM] = affyprobeaffinities(SequenceMatrix,
MMIntensity)

[AffinPM, AffinMM,
BaseProf] = affyprobeaffinities(SequenceMatrix,
MMIntensity)

[AffinPM, AffinMM, BaseProf,
Stats] = affyprobeaffinities(SequenceMatrix, MMIntensity)

... = affyprobeaffinities(SequenceMatrix, MMIntensity,

...'ProbeIndices', ProbeIndicesValue, ...)

... = affyprobeaffinities(SequenceMatrix, MMIntensity,
...'Showplot', ShowplotValue, ...)

2-22

affyprobeaffinities

Arguments
SequenceMatrix An N-by-25 matrix of sequence information for

the perfect match (PM) probes on an Affymetrix
GeneChip array, where N is the number of
probes on the array. Each row corresponds to
a probe, and each column corresponds to one
of the 25 sequence positions. Nucleotides in
the sequences are represented by one of the
following integers:

• 0 — None

• 1 — A

• 2 — C

• 3 — G

• 4 — T

Tip You can use the affyprobeseqread
function to generate this matrix. If you
have this sequence information in letter
representation, you can convert it to integer
representation using the nt2int function.

MMIntensity Column vector containing mismatch (MM)
probe intensities from a CEL file, generated
from a single Affymetrix GeneChip array. Each
row corresponds to a probe.

Tip You can extract this column vector from
the MMIntensities matrix returned by the
celintensityread function.

2-23

affyprobeaffinities

ProbeIndicesValue Column vector containing probe indexing
information. Probes within a probe set are
numbered 0 through N - 1, where N is the
number of probes in the probe set.

Tip You can use the affyprobeseqread
function to generate this column vector.

ShowplotValue Controls the display of a plot showing the
affinity values of each of the four bases (A, C, G,
and T) for each of the 25 sequence positions, for
all probes on the Affymetrix GeneChip array.
Choices are true or false (default).

Return
Values

AffinPM Column vector of PM probe affinities, computed
from their probe sequences and MM probe
intensities.

AffinMM Column vector of MM probe affinities, computed
from their probe sequences and MM probe
intensities.

Description [AffinPM, AffinMM] = affyprobeaffinities(SequenceMatrix,
MMIntensity) returns a column vector of PM probe affinities and a
column vector of MM probe affinities, computed from their probe
sequences and MM probe intensities. Each row in AffinPM and AffinMM
corresponds to a probe. NaN is returned for probes with no sequence
information. Each probe affinity is the sum of position-dependent base
affinities. For a given base type, the positional effect is modeled as a
polynomial of degree 3.

[AffinPM, AffinMM, BaseProf] =
affyprobeaffinities(SequenceMatrix, MMIntensity)
also estimates affinity coefficients using multiple linear regression. It

2-24

affyprobeaffinities

returns BaseProf, a 4-by-4 matrix containing the four parameters
for a polynomial of degree 3, for each base, A, C, G, and T. Each row
corresponds to a base, and each column corresponds to a parameter.
These values are estimated from the probe sequences and intensities,
and represent all probes on an Affymetrix GeneChip array.

[AffinPM, AffinMM, BaseProf, Stats] =
affyprobeaffinities(SequenceMatrix, MMIntensity) also returns
Stats, a row vector containing four statistics in the following order:

• R-square statistic

• F statistic

• p value

• error variance

... = affyprobeaffinities(SequenceMatrix, MMIntensity,

...'PropertyName', PropertyValue, ...) calls
affyprobeaffinities with optional properties that use
property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property
value pairs are as follows:

... = affyprobeaffinities(SequenceMatrix, MMIntensity,

...'ProbeIndices', ProbeIndicesValue, ...) uses probe indices to
normalize the probe intensities with the median of their probe set
intensities.

Tip Use of the ProbeIndices property is recommended only if your
MMIntensity data are not from a nonspecific binding experiment.

... = affyprobeaffinities(SequenceMatrix, MMIntensity,

...'Showplot', ShowplotValue, ...) controls the display of a plot of
the probe affinity base profile. Choices are true or false (default).

2-25

affyprobeaffinities

Examples 1 Load the MAT file, included with Bioinformatics Toolbox, that
contains Affymetrix data from a prostate cancer study. The variables
in the MAT file include seqMatrix, a matrix containing sequence
information for PM probes, mmMatrix, a matrix containing MM probe
intensity values, and probeIndices, a column vector containing
probe indexing information.

load prostatecancerrawdata

2 Compute the Affymetrix PM and MM probe affinities from their
sequences and MM probe intensities, and also plot the affinity values
of each of the four bases (A, C, G, and T) for each of the 25 sequence
positions, for all probes on the Affymetrix GeneChip array.

[apm, amm] = affyprobeaffinities(seqMatrix, mmMatrix(:,1),...
'ProbeIndices', probeIndices, 'showplot', true);

2-26

affyprobeaffinities

The prostatecancerrawdata.mat file used in this example contains
data from Best et al., 2005.

References [1] Naef, F., and Magnasco, M.O. (2003). Solving the Riddle of the
Bright Mismatches: Labeling and Effective Binding in Oligonucleotide
Arrays. Physical Review E 68, 011906.

[2] Wu, Z., Irizarry, R.A., Gentleman, R., Murillo, F.M. and Spencer, F.
(2004). A Model Based Background Adjustment for Oligonucleotide

2-27

affyprobeaffinities

Expression Arrays. Journal of the American Statistical Association
99(468), 909–917.

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R.,
Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea,
M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik,
R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F.
(2005). Molecular alterations in primary prostate cancer after androgen
ablation therapy. Clinical Cancer Research 11, 6823–6834.

See Also Bioinformatics Toolbox functions: affyprobeseqread, affyread,
celintensityread, probelibraryinfo

2-28

affyprobeseqread

Purpose Read data file containing probe sequence information for Affymetrix
GeneChip array

Syntax Struct = affyprobeseqread(SeqFile, CDFFile)
Struct = affyprobeseqread(SeqFile, CDFFile, ...'SeqPath',
SeqPathValue, ...)
Struct = affyprobeseqread(SeqFile, CDFFile, ...'CDFPath',

CDFPathValue, ...)
Struct = affyprobeseqread(SeqFile, CDFFile, ...'SeqOnly',

SeqOnlyValue, ...)

2-29

affyprobeseqread

Arguments SeqFile String specifying a file name of a sequence file
(tab-separated or FASTA) that contains the following
information for a specific type of Affymetrix
GeneChip array:

• Probe set IDs

• Probe x-coordinates

• Probe y-coordinates

• Probe sequences in each probe set

• Affymetrix GeneChip array type (FASTA file only)

The sequence file (tab-separated or FASTA) must
be on the MATLAB search path or in the Current
Directory (unless you use the SeqPath property). In
a tab-separated file, each row represents a probe; in
a FASTA file, each header represents a probe.

CDFFile Either of the following:

• String specifying a file name of an Affymetrix
CDF library file, which contains information that
specifies which probe set each probe belongs to on
a specific type of Affymetrix GeneChip array. The
CDF library file must be on the MATLAB search
path or in the MATLAB Current Directory (unless
you use the CDFPath property).

• CDF structure, such as returned by the affyread
function, which contains information that specifies
which probe set each probe belongs to on a specific
type of Affymetrix GeneChip array.

Caution Make sure that SeqFile and CDFFile
contain information for the same type of Affymetrix
GeneChip array.

2-30

affyprobeseqread

SeqPathValue String specifying a directory or path and directory
where SeqFile is stored.

CDFPathValue String specifying a directory or path and directory
where CDFFile is stored.

SeqOnlyValue Controls the return of a structure, Struct, with
only one field, SequenceMatrix. Choices are true
or false (default).

Return
Values

Struct MATLAB structure containing the following fields:
• ProbeSetIDs

• ProbeIndices

• SequenceMatrix

Description Struct = affyprobeseqread(SeqFile, CDFFile) reads the data from
files SeqFile and CDFFile, and stores the data in the MATLAB
structure Struct, which contains the following fields.

Field Description

ProbeSetIDs Cell array containing the probe set IDs from the
Affymetrix CDF library file.

2-31

affyprobeseqread

Field Description

ProbeIndices Column vector containing probe indexing
information. Probes within a probe set are
numbered 0 through N - 1, where N is the number
of probes in the probe set.

SequenceMatrix An N-by-25 matrix of sequence information for
the perfect match (PM) probes on the Affymetrix
GeneChip array, where N is the number of probes
on the array. Each row corresponds to a probe,
and each column corresponds to one of the 25
sequence positions. Nucleotides in the sequences
are represented by one of the following integers:

• 0 — None

• 1 — A

• 2 — C

• 3 — G

• 4 — T

Note Probes without sequence information
are represented in SequenceMatrix as a row
containing all 0s.

Tip You can use the int2nt function to convert the
nucleotide sequences in SequenceMatrix to letter
representation.

Struct = affyprobeseqread(SeqFile, CDFFile,
...'PropertyName', PropertyValue, ...) calls affyprobeseqread
with optional properties that use property name/property value pairs.

2-32

affyprobeseqread

You can specify one or more properties in any order. Each PropertyName
must be enclosed in single quotation marks and is case insensitive.
These property name/property value pairs are as follows:

Struct = affyprobeseqread(SeqFile, CDFFile, ...'SeqPath',
SeqPathValue, ...) lets you specify a path and directory where
SeqFile is stored.

Struct = affyprobeseqread(SeqFile, CDFFile, ...'CDFPath',
CDFPathValue, ...) lets you specify a path directory where CDFFile
is stored.

Struct = affyprobeseqread(SeqFile, CDFFile, ...'SeqOnly',
SeqOnlyValue, ...) controls the return of a structure, Struct, with
only one field, SequenceMatrix. Choices are true or false (default).

Examples 1 Read the data from a FASTA file and associated CDF library file,
assuming both are located on the MATLAB search path or in the
Current Directory.

S1 = affyprobeseqread('HG-U95A_probe_fasta', 'HG_U95A.CDF');

2 Read the data from a tab-separated file and associated CDF
structure, assuming the tab-separated file is located in the specified
directory and the CDF structure is in your MATLAB Workspace.

S2 = affyprobeseqread('HG-U95A_probe_tab',hgu95aCDFStruct,...
'seqpath','C:\Affymetrix\SequenceFiles\HGGenome');

3 Access the nucleotide sequences of the first probe set (rows 1 through
20) in the SequenceMatrix field of the S2 structure.

seq = int2nt(S2.SequenceMatrix(1:20,:))

See Also Bioinformatics Toolbox functions: affyinvarsetnorm, affyread,
celintensityread, int2nt, probelibraryinfo, probesetlink,
probesetlookup, probesetplot, probesetvalues

2-33

affyread

Purpose Read microarray data from Affymetrix GeneChip file

Syntax AffyStruct = affyread(File)
AffyStruct = affyread(File, LibraryPath)

2-34

affyread

Arguments File String specifying a file name or a path and file name
of one of the following Affymetrix file types:
• EXP — Data file containing information about

experimental conditions and protocols.

• DAT — Data file containing raw image data (pixel
intensity values).

• CEL — Data file containing information about the
intensity values of the individual probes.

• CHP — Data file containing summary information
of the probe sets, including intensity values.

• CDF — Library file containing information about
which probes belong to which probe set.

• GIN — Library file containing information about
the probe sets, such as the gene name with which
the probe set is associated.

If you specify only a file name, that file must be on the
MATLAB search path or in the current directory. If
you specify only a file name of a CDF or GIN library
file, you can specify the path and directory in the
LibraryPath input argument.

LibraryPath String specifying the path and directory of:
• CDF library file associated with File when File is

a CHP file

• CDF library file when File is a CDF file

• GIN library file when File is a GIN file

Note If you do not specify LibraryPath when reading
a CHP file, affyread looks in the current directory for
the CDF file. If it does not find the CDF file, it still
reads the CHP file, but the probe set names and types
will be omitted from the return value, AffyStruct.

2-35

affyread

Return
Values

AffyStruct MATLAB structure containing information from
an Affymetrix data or library file, for expression,
genotyping (SNP), or resequencing assay types.

Description
Note This function does not work on the Solaris platform.

AffyStruct = affyread(File) reads File, an Affymetrix file, and
creates AffyStruct, a MATLAB structure. The affyread function can
read Affymetrix EXP, DAT, CEL, CHP, CDF, and GIN files created
from Affymetrix GeneChip arrays for expression, genotyping (SNP), or
resequencing assays.

AffyStruct = affyread(File, LibraryPath) specifies the path and
directory of:

• CDF library file associated with File when File is a CHP file

• CDF library file when File is a CDF file

• GIN library file when File is a GIN file

Note If you do not specify LibraryPath when reading a CHP file,
affyread looks in the current directory for the CDF file. If it does not
find the CDF file, it still reads the CHP file, but the probe set names
and types will be omitted from the return value, AffyStruct.

You can learn more about the Affymetrix GeneChip files and download
sample files from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

2-36

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

affyread

Note Some Affymetrix sample data files (DAT, EXP, CEL, and CHP)
are combined in a DTT or CAB file. You must download and use the
Affymetrix Data Transfer Tool to extract these files from the DTT or
CAB file. You can download the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/products/software/specific/dtt.affx

You will have to register and log in at the Affymetrix Web site to
download the Affymetrix Data Transfer Tool.

The following tables describe the fields in AffyStruct for the different
Affymetrix file types.

All File Types (EXP, DAT, CEL, CHP, CDF, and GIN)

Field Description

Name File name.

DataPath Path and directory of the file.

LibPath Path and directory of the CDF and GIN library
files associated with the file being read.

FullPathName Path and directory of the file

ChipType Name of the Affymetrix GeneChip array (for
example, DrosGenome1 or HG-Focus).

Date Date the file was created.

2-37

http://www.affymetrix.com/products/software/specific/dtt.affx

affyread

EXP File

Field Description

ChipLot
Operator
SampleType
SampleDesc
Project
Comments
Reagents
ReagentLot
Protocol
Station
Module
HydridizeDate
ScanPixelSize
ScanFilter
ScanDate
ScannerID
NumberOfScans
ScannerType
NumProtocolSteps
ProtocolSteps

Information about experimental conditions and
protocols captured by the Affymetrix software.

DAT File

Field Description

NumPixelsPerRow Number of pixels per row in the image created
from the GeneChip array (number of columns).

NumRows Number of rows in the image created from the
GeneChip array.

MinData Minimum intensity value in the image created
from the GeneChip array.

2-38

affyread

Field Description

MaxData Maximum intensity value in the image created
from the GeneChip array.

PixelSize Size of one pixel in the image created from the
GeneChip array.

CellMargin Size of gaps between cells in the image created
from the GeneChip array.

ScanSpeed Speed of the scanner used to create the image.

ScanDate Date the scan was performed.

ScannerID Name of the scanning device used.

UpperLeftX
UpperLeftY
UpperRightX
UpperRightY
LowerLeftX
LowerLeftY
LowerRightX
LowerRightY

Pixel coordinates of the scanned image.

ServerName Not used.

Image A NumRows-by-NumPixelsPerRow image of the
scanned GeneChip array.

CEL File

Field Description

FileVersion Version of the CEL file format.

Algorithm Algorithm used in the image processing step
that converts from DAT format to CEL format.

AlgParams String containing parameters used by the
algorithm in the image processing step.

2-39

affyread

Field Description

NumAlgParams Number of parameters in AlgParams.

CellMargin Size of gaps between cells in the image created
from the GeneChip array, used for computing
the intensity values of the cells.

Rows Number of rows of probes.

Cols Number of columns of probes.

NumMasked Number of probes that are masked and not used
in subsequent processing.

NumOutliers Number of cells identified as outliers (very high
or very low intensity) by the image processing
step.

NumProbes Number of probes (Rows * Cols) on the
GeneChip array.

UpperLeftX
UpperLeftY
UpperRightX
UpperRightY
LowerLeftX
LowerLeftY
LowerRightX
LowerRightY

Pixel coordinates of the scanned image.

2-40

affyread

Field Description

ProbeColumnNames Cell array containing the eight column names
in the Probes field:

• PosX — x-coordinate of the cell

• PosY — y-coordinate of the cell

• Intensity — Intensity value of the cell

• StdDev — Standard deviation of intensity
value

• Pixels — Number of pixels in the cell

• Outlier — True/false flag indicating if the
cell was marked as an outlier

• Masked — True/false flag indicating if the
cell was masked

• ProbeType — Integer indicating the probe
type (for example, 1 = expression)

Probes NumProbes-by-8 array of information about the
individual probes, including intensity values.
The columns of this array are contained in the
ProbeColumnNames field.

CHP File

Field Description

AssayType Type of assay that the GeneChip array contained
(for example, Expression, Genotyping, or
Resequencing).

CellFile File name of the CEL file from which the CHP
file was created.

2-41

affyread

Field Description

Algorithm Algorithm used to convert from CEL format to
CHP format.

AlgVersion Version of the algorithm used to create the CHP
file.

NumAlgParams Number of parameters in AlgParams.

AlgParams String containing parameters used in steps
needed to create the CHP file (for example,
background correction).

NumChipSummary Number of entries in ChipSummary.

ChipSummary Summary information for the GeneChip array,
including background average, standard
deviation, max, and min.

BackgroundZones Structure containing information about the zones
used in the background adjustment step.

Rows Number of rows of probes.

Cols Number of columns of probes.

NumProbeSets Number of probe sets on the GeneChip array.

NumQCProbeSets Number of QC probe sets on the GeneChip array.

2-42

affyread

Field Description

ProbeSets

(Expression
GeneChip array)

A NumProbeSets-by-1 structure array containing
information for each expression probe set,
including the following fields:

• Name — Name of the probe set.

• ProbeSetType — Type of the probe set.

• CompDataExists — True/false flag indicating
if the probe set has additional computed
information.

• NumPairs — Number of probe pairs in the
probe set.

• NumPairsUsed — Number of probe pairs in the
probe set used for calculating the probe set
signal (not masked).

• Signal — Summary intensity value for the
probe set.

• Detection — Indicator of statistically
significant difference between the intensity
value of the PM probes and the intensity
value of the MM probes in a single probe set
(Present, Absent, or Marginal).

• DetectionPValue — P value for the Detection
indicator.

• CommonPairs — When CompDataExists is
true, contains the number of common pairs
between the experiment and the baseline
after outliers and masked probes have been
removed.

• SignalLogRatio — When CompDataExists is
true, contains the change in signal between
the experiment and baseline.

• SignalLogRatioLow — When CompDataExists
is true, contains the lowest ratios of probes
between the experiment and the baseline.

• SignalLogRatioHigh — When
CompDataExists is true, contains the
highest ratios of probes between the
experiment and the baseline.

Wh i

2-43

affyread

Field Description

ProbeSets

(Genotyping
GeneChip array)

A NumProbeSets-by-1 structure array containing
information for each genotyping probe set,
including the following fields:

• Name — Name of the probe set

• AlleleCall — Allele that is present for the
probe set. Possibilities are AA (homozygous
for the major allele), AB (heterozygous for
the major and minor allele), BB (homozygous
for the minor allele), or NoCall (unable to
determine allele).

• Confidence — A measure of the accuracy of
the allele call.

• RAS1 — Relative Allele Signal 1 for the SNP
site, which is calculated using sense probes.

• RAS2— Relative Allele Signal 2 for the SNP
site, which is calculated using antisense
probes.

• PValueAA — P value for an AA call.

• PValueAB — P value for an AB call.

• PValueBB — P value for a BB call.

• PValueNoCall — P value for a NoCall call.

ProbeSets

(Resequencing
GeneChip array)

A NumProbeSets-by-1 structure array containing
information for each resequencing probe set,
including the following fields:

• CalledBases — A 1-by-NumProbeSets
character array containing the bases called by
the resequencing algorithm. Possible values
are a, c, g, t, and n.

• Scores — A 1-by-NumProbeSets array
containing the score associated with each base
call.

2-44

affyread

CDF File

Field Description

Rows Number of rows of probes.

Cols Number of columns of probes.

NumProbeSets Number of probe sets on the GeneChip array.

NumQCProbeSets Number of QC probe sets on the GeneChip
array.

2-45

affyread

Field Description

ProbeSetColumnNames Cell array containing the six column names
in the ProbePairs field in the ProbeSets
array:

• ProbeSetNumber — Number identifying
the probe set to which the probe pair
belongs.

• ProbePairNumber — Index of the probe
pair within the probe set.

• PMPosX — x-coordinate of the perfect
match probe.

• PMPosY — y-coordinate of the perfect
match probe.

• MMPosX — x-coordinate of the mismatch
probe.

• MMPosY — y-coordinate of the mismatch
probe.

ProbeSets A NumProbeSets-by-1 structure array
containing information for each probe set,
including the following fields:

• Name — Name of the probe set.

• ProbeSetType — Type of the probe set.

• CompDataExists — True/false flag
indicating if the probe set has additional
computed information.

• NumPairs — Number of probe pairs in the
probe set.

• NumQCProbes — Number of QC probes in
the probe set.

• QCType — Type of QC probes.

• ProbePairs — NumPairs-by-6 array of
information about the probe pairs. The
column names of this array are contained
in the ProbeSetColumnNames field.

2-46

affyread

GIN File

Field Description

Version GIN file format version.

ProbeSetName Probe set ID/name.

ID Identifier for the probe set (gene ID).

Description Description of the probe set.

SourceNames Source(s) of the probe sets.

SourceURL Source URL(s) for the probe sets.

SourceID Vector of numbers specifying which SourceNames
or SourceURL each probe set is associated with.

Examples The following example uses the demo data and CDF library file from
the E. coli Antisense Genome array, which you can download from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After you download the demo data, you will need the Affymetrix Data
Transfer Tool to extract the CEL, DAT, and CHP files from a DTT file.
You can download the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/products/software/specific/dtt.affx

The following example assumes that files
Ecoli-antisense-121502.CEL, Ecoli-antisense-121502.dat,
and Ecoli-antisense-121502.chp are stored on the MATLAB
search path or in the current directory. It also assumes that
the associated CDF library file, Ecoli_ASv2.CDF, is stored at
D:\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CEL file into a MATLAB structure.

celStruct = affyread('Ecoli-antisense-121502.CEL');

2-47

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/products/software/specific/dtt.affx

affyread

2 Display a spatial plot of the probe intensities.

maimage(celStruct, 'Intensity')

3 Zoom in on a specific region of the plot.

axis([200 340 0 70])

2-48

affyread

4 Read the contents of a DAT file into a MATLAB structure, display
the raw image data, and then use the axis image function to set
the correct aspect ratio.

datStruct = affyread('Ecoli-antisense-121502.dat');
imagesc(datStruct.Image)
axis image

2-49

affyread

5 Zoom in on a specific region of the plot.

axis([1900 2800 160 650])

2-50

affyread

6 Read the contents of a CHP file into a MATLAB structure, specifying
the location of the associated CDF library file. Then extract
information for probe set 3315278.

chpStruct = affyread('Ecoli-antisense-121502.chp',...
'D:\Affymetrix\LibFiles\Ecoli');

geneName = probesetlookup(chpStruct,'3315278')

geneName =

2-51

affyread

Identifier: '3315278'
ProbeSetName: 'argG_b3172_at'

CDFIndex: 5213
GINIndex: 3074

Description: [1x82 char]
Source: 'NCBI EColi Genome'

SourceURL: [1x74 char]

See Also Bioinformatics Toolbox functions: agferead, celintensityread,
gprread, probelibraryinfo, probesetlink, probesetlookup,
probesetplot, probesetvalues, sptread

2-52

agferead

Purpose Read Agilent Feature Extraction Software file

Syntax AGFEData = agferead(File)

Arguments
File Microarray data file generated with the Agilent

Feature Extraction Software.

Description AGFEData = agferead(File) reads files generated with Feature
Extraction Software from Agilent micoararry scanners and creates a
structure (AGFEData) containing the following fields:

• Header

• Stats

• Columns

• Rows

• Names

• IDs

• Data

• ColumnNames

• TextData

• TextColumnNames

Feature Extraction Software takes an image from an Agilent microarray
scanner and generates raw intensity data for each spot on the plate.
For more information about this software, see a description on their
Web site at

http://www.chem.agilent.com/scripts/pds.asp?lpage=2547

Examples 1 Read in a sample Agilent Feature Extraction Software file. Note that
the file fe_sample.txt is not provided with Bioinformatics Toolbox.

2-53

http://www.chem.agilent.com/scripts/pds.asp?lpage=2547

agferead

agfeStruct = agferead('fe_sample.txt')

2 Plot the median foreground.

maimage(agfeStruct,'gMedianSignal');
maboxplot(agfeStruct,'gMedianSignal');

See Also Bioinformatics Toolbox functions: affyread, celintensityread,
galread, geosoftread, gprread, imageneread, magetfield, sptread

2-54

aminolookup

Purpose Find amino acid codes, integers, abbreviations, names, and codons

Syntax aminolookup
aminolookup(SeqAA)
aminolookup('Code', CodeValue)
aminolookup('Integer', IntegerValue)
aminolookup('Abbreviation', AbbreviationValue)
aminolookup('Name', NameValue)

Arguments SeqAA Character string of single-letter codes or
three-letter abbreviations representing an
amino acid sequence. For valid codes and
abbreviations, see the table Amino Acid
Lookup on page 2-56.

CodeValue String specifying a single-letter code
representing an amino acid. For valid
single-letter codes, see the table Amino Acid
Lookup on page 2-56.

IntegerValue Single integer representing an amino acid.
For valid integers, see the table Amino Acid
Lookup on page 2-56.

AbbreviationValue String specifying a three-letter abbreviation
representing an amino acid. For valid
three-letter abbreviations, see the table Amino
Acid Lookup on page 2-56.

NameValue String specifying an amino acid name. For
valid amino acid names, see the table Amino
Acid Lookup on page 2-56.

2-55

aminolookup

Amino Acid Lookup

Code Integer Abbreviation Name Codons

A 1 Ala Alanine GCU GCC GCA GCG

R 2 Arg Arginine CGU CGC CGA CGG
AGA AGG

N 3 Asn Asparagine AAU AAC

D 4 Asp Aspartic acid
(Aspartate)

GAU GAC

C 5 Cys Cysteine UGU UGC

Q 6 Gln Glutamine CAA CAG

E 7 Glu Glutamic acid
(Glutamate)

GAA GAG

G 8 Gly Glycine GGU GGC GGA GGG

H 9 His Histidine CAU CAC

I 10 Ile Isoleucine AUU AUC AUA

L 11 Leu Leucine UUA UUG CUU CUC
CUA CUG

K 12 Lys Lysine AAA AAG

M 13 Met Methionine AUG

F 14 Phe Phenylalanine UUU UUC

P 15 Pro Proline CCU CCC CCA CCG

S 16 Ser Serine UCU UCC UCA UCG
AGU AGC

T 17 Thr Threonine ACU ACC ACA ACG

W 18 Trp Tryptophan UGG

2-56

aminolookup

Code Integer Abbreviation Name Codons

Y 19 Tyr Tyrosine UAU UAC

V 20 Val Valine GUU GUC GUA GUG

B 21 Asx Asparagine or
Aspartic acid
(Aspartate)

AAU AAC GAU GAC

Z 22 Glx Glutamine or
Glutamic acid
(Glutamate)

CAA CAG GAA GAG

X 23 Xaa Any amino
acid

All codons

* 24 END Termination
codon
(translation
stop)

UAA UAG UGA

- 25 GAP Gap of
unknown
length

NA

Description aminolookup displays a table of amino acid codes, integers, abbreviations,
names, and codons.

aminolookup(SeqAA) converts between single-letter codes and
three-letter abbreviations for an amino acid sequence. If the input is
a character string of single-letter codes, then the output is a character
string of three-letter abbreviations. If the input is a character string of
three-letter abbreviations, then the output is a character string of the
corresponding single-letter codes.

If you enter one of the ambiguous single-letter codes B, Z, or X, this
function displays the corresponding abbreviation for the ambiguous
amino acid character.

2-57

aminolookup

aminolookup('abc')

ans =

AlaAsxCys

aminolookup('Code', CodeValue) displays the corresponding amino
acid three-letter abbreviation and name.

aminolookup('Integer', IntegerValue) displays the corresponding
amino acid single-letter code, three-letter abbreviation, and name.

aminolookup('Abbreviation', AbbreviationValue) displays the
corresponding amino acid single-letter code and name.

aminolookup('Name', NameValue) displays the corresponding amino
acid single-letter code and three-letter abbreviation.

Examples • Convert an amino acid sequence in single-letter codes to the
corresponding three-letter abbreviations.

aminolookup('MWKQAEDIRDIYDF')

ans =

MetTrpLysGlnAlaGluAspIleArgAspIleTyrAspPhe

• Convert an amino acid sequence in three-letter abbreviations to the
corresponding single-letter codes.

aminolookup('MetTrpLysGlnAlaGluAspIleArgAspIleTyrAspPhe')

ans =

MWKQAEDIRDIYDF

• Display the three-letter abbreviation and name for the amino acid
corresponding to the single-letter code R.

2-58

aminolookup

aminolookup('Code', 'R')

ans =

Arg Arginine

• Display the single-letter code, three-letter abbreviation, and name
for the amino acid corresponding to the integer 1.

aminolookup('Integer', 1)

ans =

A Ala Alanine

• Display the single-letter code and name for the amino acid
corresponding to the three-letter abbreviation asn.

aminolookup('Abbreviation', 'asn')

ans =

N Asparagine

• Display the single-letter code and three-letter abbreviation for the
amino acid proline.

aminolookup('Name','proline')

ans =

P Pro

See Also Bioinformatics Toolbox functions: aa2int, aacount, geneticcode,
int2aa, nt2aa, revgeneticcode

2-59

atomiccomp

Purpose Calculate atomic composition of protein

Syntax NumberAtoms = atomiccomp(SeqAA)

Arguments
SeqAA Amino acid sequence. Enter a character string or vector

of integers from the table . You can also enter a structure
with the field Sequence.

Description NumberAtoms = atomiccomp(SeqAA) counts the type and number of
atoms in an amino acid sequence (SeqAA) and returns the counts in a
1-by-1 structure (NumberAtoms) with fields C, H, N, O, and S.

Examples 1 Get an amino acid sequence from the NCBI Genpept Database.

rhodopsin = getgenpept('NP_000530');

2 Count the atoms in a sequence.

rhodopsinAC = atomiccomp(rhodopsin)

rhodopsinAC =

C: 1814
H: 2725
N: 423
O: 477
S: 25

3 Retrieve the number of carbon atoms in the sequence.

rhodopsinAC.C

ans =

1814

2-60

atomiccomp

See Also Bioinformatics Toolbox functions aacount, molweight, proteinplot

2-61

basecount

Purpose Count nucleotides in sequence

Syntax NumberBases = basecount(SeqNT)
basecount(..., 'PropertyName', PropertyValue,...)
basecount(..., 'Chart', ChartValue)
basecount(..., 'Others', OthersValue)
basecount(..., 'Structure', StructureValue),

Arguments
SeqNT Nucleotide sequence. Enter a character string

with the letters A, T, U, C, and G. The count for
U characters is included with the count for T
characters. . You can also enter a structure with
the field Sequence.

ChartValue Property to select a type of plot. Enter either 'pie'
or 'bar'.

OthersValue Property to control counting ambiguous characters
individually. Enter either full' or 'bundle'
(default).

Description NumberBases = basecount(SeqNT) counts the number of bases in a
nucleotide sequence (SeqNT) and returns the base counts in a 1-by-1
structure (Bases) with the fields A, C, G, T.

• For sequences with the character U, the number of U characters is
added to the number of T characters.

• If a sequence contains ambiguous nucleotide characters (R, Y, K, M,
S, W, B, D, H, V, N), or gaps indicated with a hyphen (-), this function
creates a field Others and displays a warning message.

Warning: Ambiguous symbols 'symbol list' appear
in the sequence.
These will be in Others.

2-62

basecount

• If a sequence contains undefined nucleotide characters (E F H I J
L O P Q X Z) , the characters are counted in the field Others and a
warning message is displayed.

Warning: Unknown symbols 'symbol list' appear
in the sequence.
These will be ignored.

• If the property Others = 'full', ambiguous characters are listed
separately and hyphens are counted in a new field (Gaps).

basecount(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs:

basecount(..., 'Chart', ChartValue) creates a chart showing the
relative proportions of the nucleotides.

basecount(..., 'Others', OthersValue), when OthersValue is
'full', counts all the ambiguous nucleotide symbols individually
instead of bundling them together into the Others field of the output
structure.

basecount(..., 'Structure', StructureValue), when
StructureValue is 'full' , blocks the unknown characters warning
and ignores counting unknown characters.

• basecount(SeqNT) — Display four nucleotides, and only if there
are ambiguous and unknown characters, add an Others field with
the counts.

• basecount(SeqNT, 'Others', 'full') — Display four nucleotides,
11 ambiguous nucleotides, gaps, and only if there are unknown
characters, add an Others field with the unknown counts.

• basecount(SeqNT, 'Structure', 'full') — Display four
nucleotides and always display an Others field. If there are
ambiguous and unknown characters, add counts to the Others field;
otherwise display 0.

2-63

basecount

• basecount(SeqNT, 'Others', 'full', 'Structure', 'full')
— Display 4 nucleotides, 11 ambiguous nucleotides, gaps, and the
Others field. If there are unknown characters, add counts to the
Others field; otherwise display 0.

Examples 1 Count the number of bases in a DNA sequence.

Bases = basecount('TAGCTGGCCAAGCGAGCTTG')

Bases =
A: 4
C: 5
G: 7
T: 4

2 Get the count for adenosine (A) bases.

Bases.A

ans =
4

3 Count the bases in a DNA sequence with ambiguous characters.

basecount('ABCDGGCCAAGCGAGCTTG','Others','full')

ans =
A: 4
C: 5
G: 6
T: 2
R: 0
Y: 0
K: 0
M: 0
S: 0
W: 0
B: 1

2-64

basecount

D: 1
H: 0
V: 0
N: 0

Gaps: 0

See Also Bioinformatics Toolbox functions aacount, baselookup, codoncount,
cpgisland, dimercount, nmercount, ntdensity, seqtool

2-65

baselookup

Purpose Nucleotide codes, abbreviations, and names

Syntax baselookup('Complement', SeqNT)
baselookup('Code', CodeValue)
baselookup('Integer', IntegerValue)
baselookup('Name', NameValue)

Arguments SeqNT Nucleotide sequence. Enter a character string of
single-letter codes from the Nucleotide Lookup
Table below.

In addition to a single nucleotide sequence,
SeqNT can be a cell array of sequences,
or a two-dimensional character array of
sequences. The complement for each sequence
is determined independently.

CodeValue Nucleotide letter code. Enter a single character
from the Nucleotide Lookup Table below. Code
can also be a cell array or a two-dimensional
character array.

IntegerValue Nucleotide integer. Enter an integer from the
Nucleotide Lookup Table below. Integers are
arbitrarily assigned to IUB/IUPAC letters.

NameValue Nucleotide name. Enter a nucleotide name from
the Nucleotide Lookup Table below. NameValue
can also be a single name, a cell array, or a
two-dimensional character array.

Nucleotide Lookup Table

Code Integer Base Name Meaning Complement

A 1 Adenine A T

C 2 Cytosine C G

2-66

baselookup

Code Integer Base Name Meaning Complement

G 3 Guanine G C

T 4 Thymine T A

U 4 Uracil U A

R 5 (Purine) G|A Y

Y 6 (Pyrimidine) T|C R

K 7 (Keto) G|T M

M 8 (Amino) A|C K

S 9 Strong interaction (3 H
bonds)

G|C S

W 10 Weak interaction (2 H
bonds)

A|T W

B 11 Not A G|T|C V

D 12 Not C G|A|T H

H 13 Not G A|T|C D

V 14 Not T or U G|A|C B

N,X 15 Any nucleotide G|A|T|C N

- 16 Gap of indeterminate
length

Gap -

Description baselookup('Complement', SeqNT) displays the complementary
nucleotide sequence.

baselookup('Code', CodeValue) displays the corresponding letter
code, meaning, and name. For ambiguous nucleotide letters (R Y K M S
W B D H V N X), the name is replace by a descriptive name.

baselookup('Integer', IntegerValue) displays the corresponding
letter code, meaning, and nucleotide name.

2-67

baselookup

baselookup('Name', NameValue) displays the corresponding letter
code and meaning.

Examples baselookup('Complement', 'TAGCTGRCCAAGGCCAAGCGAGCTTN')

baselookup('Name','cytosine')

See Also Bioinformatics Toolbox functions basecount, codoncount, dimercount,
geneticcode, nt2aa, nt2int, revgeneticcode, seqtool

2-68

biograph

Purpose Create biograph object

Syntax BGobj = biograph(CMatrix)
BGobj = biograph(CMatrix, NodeIDs)
BGobj = biograph(CMatrix, NodeIDs, ...'ID', IDValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ...'Label', LabelValue,

...)
BGobj = biograph(CMatrix, NodeIDs, ...'Description',

DescriptionValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ...'LayoutType',

LayoutTypeValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ...'EdgeType',

EdgeTypeValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ...'Scale', ScaleValue,

...)
BGobj = biograph(CMatrix, NodeIDs, ...'LayoutScale',

LayoutScaleValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ...'EdgeTextColor',

EdgeTextColorValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ...'EdgeFontSize',

EdgeFontSizeValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ...'ShowArrows',

ShowArrowsValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ...'ArrowSize',

ArrowSizeValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ...'ShowWeights',

ShowWeightsValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ...'ShowTextInNodes',

ShowTextInNodesValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ...'NodeAutoSize',

NodeAutoSizeValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ...'NodeCallback',

NodeCallbackValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ...'EdgeCallback',

EdgeCallbackValue, ...)
BGobj = biograph(CMatrix, NodeIDs, ...'CustomNodeDrawFcn',

CustomNodeDrawFcnValue, ...)

2-69

biograph

Arguments
CMatrix Full or sparse square matrix that acts as

a connection matrix. That is, a value of
1 indicates a connection between nodes
while a 0 indicates no connection. The
number of rows/columns is equal to the
number of nodes.

NodeIDs Node identification strings. Enter any of
the following:
• Cell array of strings with the number

of strings equal to the number of rows
or columns in the connection matrix
CMatrix. Each string must be unique.

• Character array with the number of
rows equal to the number of nodes.
Each row in the array must be unique.

• String with the number of characters
equal to the number of nodes. Each
character must be unique.

Default values are the row or column
numbers.

Note You must specify NodeIDs if you
want to specify property name/value
pairs. Set NodeIDs to [] to use the default
values of the row/column numbers.

IDValue String to identify the biograph object.
Default is ''. (This information is for
bookkeeping purposes only.)

2-70

biograph

LabelValue String to label the biograph object.
Default is ''. (This information is for
bookkeeping purposes only.)

DescriptionValue String that describes the biograph object.
Default is ''. (This information is for
bookkeeping purposes only.)

LayoutTypeValue String that specifies the algorithm for the
layout engine. Choices are:
• 'hierarchical' (default)

• 'equilibrium'

• 'radial'

EdgeTypeValue String that specifies how edges display.
Choices are:
• 'straight'

• 'curved' (default)

• 'segmented'

Note Curved or segmented edges
occur only when necessary to avoid
obstruction by nodes. Biograph objects
with LayoutType equal to 'equilibrium'
or 'radial' cannot produce curved or
segmented edges.

ScaleValue Positive number that post-scales the node
coordinates. Default is 1.

LayoutScaleValue Positive number that scales the size of the
nodes before calling the layout engine.
Default is 1.

2-71

biograph

EdgeTextColorValue Three-element numeric vector of RGB
values. Default is [0, 0, 0], which
defines black.

EdgeFontSizeValue Positive number that sets the size of the
edge font in points. Default is 8.

ShowArrowsValue Controls the display of arrows for the
edges. Choices are 'on' (default) or
'off'.

ArrowSizeValue Positive number that sets the size of the
arrows in points. Default is 8.

ShowWeightsValue Controls the display of text indicating the
weight of the edges. Choices are 'on'
(default) or 'off'.

ShowTextInNodesValue String that specifies the node property
used to label nodes when you display a
biograph object using the view method.
Choices are:

• 'Label' — Uses the Label property of
the node object (default).

• 'ID' — Uses the ID property of the
node object.

• 'None'

2-72

biograph

NodeAutoSizeValue Controls precalculating the node size
before calling the layout engine. Choices
are 'on' (default) or 'off'.

NodeCallbackValue User callback for all nodes. Enter the
name of a function, a function handle, or a
cell array with multiple function handles.
After using the view function to display
the biograph in the Biograph Viewer, you
can double-click a node to activate the
first callback, or right-click and select a
callback to activate. Default is @(node)
inspect(node), which displays the
Property Inspector dialog box.

EdgeCallbackValue User callback for all edges. Enter the
name of a function, a function handle, or a
cell array with multiple function handles.
After using the view function to display
the biograph in the Biograph Viewer, you
can double-click an edge to activate the
first callback, or right-click and select a
callback to activate. Default is @(edge)
inspect(edge), which displays the
Property Inspector dialog box.

CustomNodeDrawFcnValue Function handle to customized function to
draw nodes. Default is [].

Description BGobj = biograph(CMatrix) creates a biograph object, BGobj, using a
connection matrix, CMatrix. All nondiagonal and positive entries in the
connection matrix, CMatrix, indicate connected nodes, rows represent
the source nodes, and columns represent the sink nodes.

BGobj = biograph(CMatrix, NodeIDs) specifies the node
identification strings. NodeIDs can be:

2-73

biograph

• Cell array of strings with the number of strings equal to the number
of rows or columns in the connection matrix CMatrix. Each string
must be unique.

• Character array with the number of rows equal to the number of
nodes. Each row in the array must be unique.

• String with the number of characters equal to the number of nodes.
Each character must be unique.

Default values are the row or column numbers.

Note If you want to specify property name/value pairs, you must
specify NodeIDs. Set NodeIDs to [] to use the default values of the
row/column numbers.

BGobj = biograph(..., 'PropertyName', PropertyValue, ...)
calls biograph with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case
insensitive. These property name/property value pairs are as follows:

BGobj = biograph(CMatrix, NodeIDs, ...'ID', IDValue, ...) specifies
an ID for the biograph object. Default is ''. (This information is for
bookkeeping purposes only.)

BGobj = biograph(CMatrix, NodeIDs, ...'Label', LabelValue, ...)
specifies a label for the biograph object. Default is ''. (This information
is for bookkeeping purposes only.)

BGobj = biograph(CMatrix, NodeIDs, ...'Description',
DescriptionValue, ...) specifies a description of the biograph object.
Default is ''. (This information is for bookkeeping purposes only.)

BGobj = biograph(CMatrix, NodeIDs, ...'LayoutType',
LayoutTypeValue, ...) specifies the algorithm for the layout engine.

2-74

biograph

BGobj = biograph(CMatrix, NodeIDs, ...'EdgeType', EdgeTypeValue,
...) specifies how edges display.

BGobj = biograph(CMatrix, NodeIDs, ...'Scale', ScaleValue, ...)
post-scales the node coordinates. Default is 1.

BGobj = biograph(CMatrix, NodeIDs, ...'LayoutScale',
LayoutScaleValue, ...) scales the size of the nodes before calling the
layout engine. Default is 1.

BGobj = biograph(CMatrix, NodeIDs, ...'EdgeTextColor',
EdgeTextColorValue, ...) specifies a three-element numeric vector of
RGB values. Default is [0, 0, 0], which defines black.

BGobj = biograph(CMatrix, NodeIDs, ...'EdgeFontSize',
EdgeFontSizeValue, ...) sets the size of the edge font in points.
Default is 8.

BGobj = biograph(CMatrix, NodeIDs, ...'ShowArrows',
ShowArrowsValue, ...) controls the display of arrows for the edges.
Choices are 'on' (default) or 'off'.

BGobj = biograph(CMatrix, NodeIDs, ...'ArrowSize', ArrowSizeValue,
...) sets the size of the arrows in points. Default is 8.

BGobj = biograph(CMatrix, NodeIDs, ...'ShowWeights',
ShowWeightsValue, ...) controls the display of text indicating the
weight of the edges. Choices are 'on' (default) or 'off'.

BGobj = biograph(CMatrix, NodeIDs, ...'ShowTextInNodes',
ShowTextInNodesValue, ...) specifies the node property used to label
nodes when you display a biograph object using the view method.

BGobj = biograph(CMatrix, NodeIDs, ...'NodeAutoSize',
NodeAutoSizeValue, ...) controls precalculating the node size before
calling the layout engine. Choices are 'on' (default) or 'off'.

BGobj = biograph(CMatrix, NodeIDs, ...'NodeCallback',
NodeCallbackValue, ...) specifies user callback for all nodes.

BGobj = biograph(CMatrix, NodeIDs, ...'EdgeCallback',
EdgeCallbackValue, ...) specifies user callback for all edges.

2-75

biograph

BGobj = biograph(CMatrix, NodeIDs, ...'CustomNodeDrawFcn',
CustomNodeDrawFcnValue, ...) specifies function handle to customized
function to draw nodes. Default is [].

Examples 1 Create a biograph object with default node IDs, and then use the get
function to display the node IDs.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg1 = biograph(cm)
Biograph object with 5 nodes and 9 edges.
get(bg1.nodes,'ID')

ans =

'Node 1'
'Node 2'
'Node 3'
'Node 4'
'Node 5'

2 Create a biograph object, assign the node IDs, and then use the get
function to display the node IDs.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
ids = {'M30931','L07625','K03454','M27323','M15390'};
bg2 = biograph(cm,ids);
get(bg2.nodes,'ID')

ans =

'M30931'
'L07625'
'K03454'
'M27323'
'M15390'

3 Use the view method to display the biograph object.

2-76

biograph

view(bg2)

See Also Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object:
allshortestpaths, conncomp, dolayout, getancestors,
getdescendants, getedgesbynodeid, getmatrix, getnodesbyid,

2-77

biograph

getrelatives, isdag, isomorphism, isspantree, maxflow,
minspantree, shortestpath, topoorder, traverse, view

MATLAB functions: get, set

2-78

blastncbi

Purpose Create remote NCBI BLAST report request ID

Syntax blastncbi(Seq, Program)
RID = blastncbi(Seq, Program)
[RID, RTOE] = blastncbi(Seq, Program)
... blastncbi(Seq, Program, ...'Database',
DatabaseValue, ...)
... blastncbi(Seq, Program, ...'Descriptions',

DescriptionsValue, ...)
... blastncbi(Seq, Program, ...'Alignments',
AlignmentsValue,

...)
... blastncbi(Seq, Program, ...'Filter', FilterValue, ...)
... blastncbi(Seq, Program, ...'Expect', ExpectValue, ...)
... blastncbi(Seq, Program, ...'Word', WordValue, ...)
... blastncbi(Seq, Program, ...'Matrix', MatrixValue, ...)
... blastncbi(Seq, Program, ...'GapOpen',
GapOpenValue, ...)
... blastncbi(Seq, Program, ...'ExtendGap', ExtendGapValue,

...)
... blastncbi(Seq, Program, ...'Inclusion', InclusionValue,

...)
... blastncbi(Seq, Program, ...'Pct', PctValue, ...)

2-79

blastncbi

Arguments Seq Nucleotide or amino acid sequence specified by
any of the following:

• GenBank, GenPept, or RefSeq accession
number

• GI sequence identifier

• FASTA file

• URL pointing to a sequence file

• String

• Character array

• MATLAB structure containing a Sequence
field

Program String specifying a BLAST program. Choices are:

• 'blastn' — Search nucleotide query versus
nucleotide database.

• 'blastp' — Search protein query versus
protein database.

• 'blastx' — Search translated query versus
protein database.

• 'megablast' — Quickly search for highly
similar nucleotide sequences.

• 'psiblast' — Search protein query using
position-specific iterated BLAST.

• 'tblastn' — Search protein query versus
translated database.

• 'tblastx' — Search translated query versus
translated database.

2-80

blastncbi

DatabaseValue String specifying a database. Compatible
databases depend on the type of sequence
specified by Seq, and the program specified by
Program.

Choices for nucleotide sequences are:

• 'nr' (default)

• 'refseq_rna'

• 'refseq_genomic'

• 'est'

• 'est_human'

• 'est_mouse'

• 'est_others'

• 'gss'

• 'htgs'

• 'pat'

• 'pdb'

• 'month'

• 'alu_repeats'

• 'dbsts'

• 'chromosome'

• 'wgs'

• 'env_nt'

Choices for amino acid sequences are:

• 'nr' (default)

• 'refseq_protein'

• 'swissprot'

• 'pat'

• 'month'

• 'pdb'

• 'env_nr'

2-81

blastncbi

DescriptionsValue Value specifying the number of short descriptions
to include in the report. Default is 100, unless
Program = 'psiblast', then default is 500.

Note Specify a DescriptionsValue only when
you do not specify return values.

AlignmentsValue Value specifying the number of sequences for
which high-scoring sequence pairs (HSPs) are
reported. Default is 100, unless Program =
'psiblast', then default is 500.

Note Specify an AlignmentsValue only when
you do not specify return values.

FilterValue String specifying a filter. Possible choices are:

• 'L' (default) — Low complexity

• 'R' — Human repeats

• 'm' — Mask for lookup table

• 'lcase' — Turn on the lowercase mask

Choices vary depending on the selected Program.
For more information, see the table Choices for
Optional Properties by BLAST Program on page
2-90.

ExpectValue Value specifying the statistical significance
threshold for matches against database
sequences. Choices are any real number. Default
is 10.

2-82

blastncbi

WordValue Value specifying a word length for the query
sequence.

Choices for amino acid sequences are:

• 2

• 3 (default)

Choices for nucleotide sequences are:

• 7

• 11 (default)

• 15

Choices when Program = 'megablast' are:

• 11

• 12

• 16

• 20

• 24

• 28 (default)

• 32

• 48

• 64

2-83

blastncbi

MatrixValue String specifying the substitution matrix for
amino acid sequences only. The matrix assigns
the score for a possible alignment of any two
amino acid residues. Choices are:

• 'PAM30'

• 'PAM70'

• 'BLOSUM45'

• 'BLOSUM62' (default)

• 'BLOSUM80'

GapOpenValue Either of the following:

• Integer that specifies the penalty for opening a
gap in the alignment of amino acid sequences.

• Vector containing two integers: the first is the
penalty for opening a gap, and the second is
the penalty for extending the gap.

Choices and default depend on the substitution
matrix specified by the 'Matrix' property. For
more information, see the table Choices for the
GapOpen Property by Matrix on page 2-91.

GapExtendValue Integer that specifies the penalty for extending
a gap in the alignment of amino acid sequences.
Choices and default depend on the substitution
matrix specified by the 'Matrix' property. For
more information, see the table Choices for the
GapOpen Property by Matrix on page 2-91.

2-84

blastncbi

InclusionValue Value specifying the statistical significance
threshold for including a sequence in the
Position-Specific Score Matrix (PSSM) created
by PSI-BLAST for the subsequent iteration.
Default is 0.005.

Note Specify an InclusionValue only when
Program = 'psiblast'.

PctValue Value specifying the percent identity and the
corresponding match and mismatch score
for matching existing sequences in a public
database. Choices are:

• None

• 99 (default) — 99, 1, -3

• 98 — 98, 1, -3

• 95 — 95, 1, -3

• 90 — 90, 1, -2

• 85 — 85, 1, -2

• 80 — 80, 2, -3

• 75 — 75, 4, -5

• 60 — 60, 1, -1

Note Specify a PctValue only when Program =
'megablast'.

2-85

blastncbi

Return
Values

RID Request ID for the NCBI BLAST report.

RTOE Request Time Of Execution, which is an estimate
of the time (in minutes) until completion.

Tip Use this time estimate with the 'WaitTime'
property when using the getblast function.

Description The Basic Local Alignment Search Tool (BLAST) offers a fast and
powerful comparative analysis of protein and nucleotide sequences
against known sequences in online databases.

blastncbi(Seq, Program) sends a BLAST request to NCBI against
a Seq, a nucleotide or amino acid sequence, using Program, a specified
BLAST program, and then returns a command window link to the
NCBI BLAST report. For help in selecting an appropriate BLAST
program, visit:

http://www.ncbi.nlm.nih.gov/BLAST/producttable.shtml

RID = blastncbi(Seq, Program) returns RID, the Request ID for the
report.

[RID, RTOE] = blastncbi(Seq, Program) returns both RID, the
Request ID for the NCBI BLAST report, and RTOE, the Request Time Of
Execution, which is an estimate of the time until completion.

Tip Use RTOE with the 'WaitTime' property when using the getblast
function.

2-86

http://www.ncbi.nlm.nih.gov/BLAST/producttable.shtml

blastncbi

... blastncbi(..., 'PropertyName', PropertyValue,...) calls
blastncbi with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case
insensitive. These property name/property value pairs are explained
below. Additional information on these optional properties can be found
at:

http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/blastcgihelp_new.html

... blastncbi(Seq, Program, ...'Database', DatabaseValue,

...) specifies a database for the alignment search. For help in selecting
an appropriate database, visit:

http://www.ncbi.nlm.nih.gov/BLAST/producttable.shtml

... blastncbi(Seq, Program, ...'Descriptions',
DescriptionsValue, ...) specifies the number of short descriptions
to include in the report, when you do not specify return values.

... blastncbi(Seq, Program, ...'Alignments',
AlignmentsValue, ...) specifies the number of sequences for which
high-scoring segment pairs (HSPs) are reported, when you do not
specify return values.

... blastncbi(Seq, Program, ...'Filter', FilterValue, ...)
specifies the filter to apply to the query sequence.

... blastncbi(Seq, Program, ...'Expect', ExpectValue,

...) specifies a statistical significance threshold for matches against
database sequences. Choices are any real number. Default is 10. You
can learn more about the statistics of local sequence comparison at:

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html#head2

... blastncbi(Seq, Program, ...'Word', WordValue, ...)
specifies a word size for the query sequence.

... blastncbi(Seq, Program, ...'Matrix', MatrixValue, ...)
specifies the substitution matrix for amino acid sequences only. This

2-87

http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/blastcgihelp_new.html
http://www.ncbi.nlm.nih.gov/BLAST/producttable.shtml
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html#head2

blastncbi

matrix assigns the score for a possible alignment of two amino acid
residues.

... blastncbi(Seq, Program, ...'GapOpen', GapOpenValue,

...) specifies the penalty for opening a gap in the alignment of amino
acid sequences.

Choices and default depend on the substitution matrix specified by the
'Matrix' property. For more information, see the table Choices for the
GapOpen Property by Matrix on page 2-91.

For more information about allowed gap penalties for various matrices,
see:

http://www.ncbi.nlm.nih.gov/blast/html/sub_matrix.html

... blastncbi(Seq, Program, ...'ExtendGap',
ExtendGapValue, ...) specifies the penalty for extending a
gap greater than one space in the alignment of amino acid sequences.
Choices and default depend on the substitution matrix specified by the
'Matrix' property. For more information, see the table Choices for the
GapOpen Property by Matrix on page 2-91.

... blastncbi(Seq, Program, ...'Inclusion',
InclusionValue, ...) specifies the statistical significance
threshold for including a sequence in the Position-Specific Score Matrix
(PSSM) created by PSI-BLAST for the subsequent iteration. Default is
0.005.

Note Specify an InclusionValue only when Program = 'psiblast'.

... blastncbi(Seq, Program, ...'Pct', PctValue, ...)
specifies the percent identity and the corresponding match and
mismatch score for matching existing sequences in a public database.
Default is 99.

2-88

http://www.ncbi.nlm.nih.gov/blast/html/sub_matrix.html

blastncbi

Note Specify a PctValue only when Program = 'megablast'.

2-89

blastncbi
C
h
o
ic

es
fo

r
O

p
ti
o
n
a
l
P
ro

p
er

ti
es

b
y

B
LA

ST
P
ro

g
ra

m

Th
en

ch
o
ic

es
fo

r
th

e
fo

llo
w

in
g

p
ro

p
er

ti
es

a
re

..
.

W
h
en

B
LA

ST
p
ro

g
ra

m
is

..
.

D
a
ta

b
a
se

Fi
lt
er

W
o
rd

M
a
tr

ix
G

a
p

O
p
en

P
ct

'
b
l
a
s
t
n
'

'
L
'

(d
ef

au
lt

)
'
R
'

'
m
'

'
l
c
a
s
e
'

7 1
1 (d
ef

au
lt

)
1
5

—

'
m
e
g
a
b
l
a
s
t
'

'
L
'

1
1
1
2
1
6
2
0
2
4
2
8 (d
ef

au
lt

)
3
2
4
8
6
4

—
—

N
o
n
e

9
9 (d
ef

au
lt

)
9
8
9
5
9
0
8
5
8
0
7
5
6
0

'
t
b
l
a
s
t
n
'

'
L
'

(d
ef

au
lt

)
'
m
'

'
l
c
a
s
e
'

'
t
b
l
a
s
t
x
'

'
n
r
'

(d
ef

au
lt

)
'
e
s
t
'

'
e
s
t
_
h
u
m
a
n
'

'
e
s
t
_
m
o
u
s
e
'

'
e
s
t
_
o
t
h
e
r
s
'

'
g
s
s
'

'
h
t
g
s
'

'
p
a
t
'

'
p
d
b
'

'
m
o
n
t
h
'

'
a
l
u
_
r
e
p
e
a
t
s
'

'
d
b
s
t
s
'

'
c
h
r
o
m
o
s
o
m
e
'

'
w
g
s
'

'
r
e
f
s
e
q
_
r
n
a
'

'
r
e
f
s
e
q
_
g
e
n
o
m
i
c
'

'
e
n
v
_
n
t
'

'
L
'

(d
ef

au
lt

)
'
R
'

'
m
'

'
l
c
a
s
e
'

'
b
l
a
s
t
p
'

'
b
l
a
s
t
x
'

'
p
s
i
b
l
a
s
t
'

'
n
r
'

(d
ef

au
lt

)
'
s
w
i
s
s
p
r
o
t
'

'
p
a
t
'

'
p
d
b
'

'
m
o
n
t
h
'

'
r
e
f
s
e
q
_
p
r
o
t
e
i
n
'

'
e
n
v
_
n
r
'

'
L
'

(d
ef

au
lt

)
'
m
'

'
l
c
a
s
e
'

2 3
(d

ef
au

lt
)

'
P
A
M
3
0
'

'
P
A
M
7
0
'

'
B
L
O
S
U
M
4
5
'

'
B
L
O
S
U
M
6
2
'

(d
ef

au
lt

)
'
B
L
O
S
U
M
8
0
'

S
ee

th
e

n
ex

t
ta

bl
e.

—

2-90

blastncbi

Choices for the GapOpen Property by Matrix

When Substitution Matrix
is ...

Then choices for GapOpen are ...

'PAM30' [7 2]
[6 2]
[5 2]
[10 1]
[9 1](default)
[8 1]

'PAM70'

'BLOSUM80'

[8 2]
[7 2]
[6 2]
[11 1]
[10 1](default)
[9 1]

'BLOSUM45' [13 3]
[12 3]
[11 3]
[10 3]
[15 2](default)
[14 2]
[13 2]
[12 2]
[19 1]
[18 1]
[17 1]
[16 1]

'BLOSUM62' [9 2]
[8 2]
[7 2]
[12 1]
[11 1](default)
[10 1]

2-91

blastncbi

Examples % Get a sequence from the Protein Data Bank and create
% a MATLAB structure.
S = getpdb('1CIV')

% Use the structure as input for a BLAST search with an
% expectation of 1e-10.
blastncbi(S,'blastp','expect',1e-10)

% Click the URL link (Link to NCBI BLAST Request) to go
% directly to the NCBI request.

% You can also try a search directly with an accession
% number and an alternative scoring matrix.
RID = blastncbi('AAA59174','blastp','matrix','PAM70,'...

'expect',1e-10)

% The results based on the RID are at
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi

% or pass the RID to BLASTREAD to parse the report and
% load it into a MATLAB structure.
blastread(RID)

See Also Bioinformatics Toolbox functions: blastread, getblast

2-92

blastread

Purpose Read data from NCBI BLAST report file

Syntax Data = blastread(File)

Arguments File NCBI BLAST-formatted report file specified by any of the
following:

• File name or path and file name, such as returned by
the getblast function with the 'ToFile' property.

• URL pointing to a file.

• MATLAB character array that contains the text for a
NCBI BLAST report.

If you specify only a file name, that file must be on the
MATLAB search path or in the current directory.

Return
Values

Data MATLAB structure containing fields corresponding to
BLAST keywords and data from an NCBI BLAST report.

Description The Basic Local Alignment Search Tool (BLAST) offers a fast and
powerful comparative analysis of protein and nucleotide sequences
against known sequences in online databases. BLAST reports can
be lengthy, and parsing the data from the various formats can be
cumbersome.

Data = blastread(File) reads a BLAST report from File, an
NCBI-formatted file, and returns Data, a data structure containing
fields corresponding to the BLAST keywords. blastread parses the
basic BLAST reports BLASTN, BLASTP, BLASTX, TBLASTN, and TBLASTX.

Data contains the following fields.

2-93

blastread

Field Description

RID Request ID for retrieving results for a
specific NCBI BLAST search.

Algorithm NCBI algorithm used to do a BLAST
search.

Query Full sequence submitted to a BLAST
search.

Database All databases searched.

Hits.Name Name of a database sequence (subject
sequence) that matched the query
sequence.

Hits.Length Length of a subject sequence.

Hits.HSPs.Score Pair-wise alignment score for a
high-scoring sequence pair between the
query sequence and a subject sequence.

Hits.HSPs.Expect Expectation value for a high-scoring
sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.Identities Identities (matches, possibles, and
percent) for a high-scoring sequence
pair between the query sequence and a
subject sequence.

2-94

blastread

Field Description

Hits.HSPs.Positives Identical or similar residues
(matches, possibles, and percent)
for a high-scoring sequence pair
between the query sequence and a
subject amino acid sequence.

Note This field applies only to
translated nucleotide or amino acid
query sequences and/or databases.

Hits.HSPs.Gaps Nonaligned residues for a high-scoring
sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.Frame Reading frame of the translated
nucleotide sequence for a high-scoring
sequence pair between the query
sequence and a subject sequence.

Note This field applies only when
performing translated searches, that
is, when using tblastx, tblastn, and
blastx.

2-95

blastread

Field Description

Hits.HSPs.Strand Sense (Plus = 5’ to 3’ and Minus =
3’ to 5’) of the DNA strands for a
high-scoring sequence pair between the
query sequence and a subject sequence.

Note This field applies only when
using a nucleotide query sequence and
database.

Hits.HSPs.Alignment Three-row matrix showing the
alignment for a high-scoring sequence
pair between the query sequence and a
subject sequence.

Hits.HSPs.QueryIndices Indices of the query sequence residue
positions for a high-scoring sequence
pair between the query sequence and a
subject sequence.

Hits.HSPs.SubjectIndices Indices of the subject sequence residue
positions for a high-scoring sequence
pair between the query sequence and a
subject sequence.

Statistics Summary of statistical details about
the performed search, such as lambda
values, gap penalties, number of
sequences searched, and number of
hits.

Examples 1 Create an NCBI BLAST report request using a GenPept accession
number.

RID = blastncbi('AAA59174', 'blastp', 'expect', 1e-10)

2-96

blastread

RID =

'1175088155-31624-126008617054.BLASTQ3'

2 Pass the Request ID for the report to the getblast function, and
save the report data to a text file.

getblast(RID, 'ToFile' ,'AAA59174_BLAST.rpt');

Note You may need to wait for the report to become available on the
NCBI Web site before you can run the preceding command.

3 Using the saved file, read the results into a MATLAB structure.

resultsStruct = blastread('AAA59174_BLAST.rpt')

resultsStruct =

RID: '1175093446-29831-201366571074.BLASTQ2'
Algorithm: 'BLASTP 2.2.16 [Mar-11-2007]'

Query: [1x63 char]
Database: [1x96 char]

Hits: [1x50 struct]
Statistics: [1x1034 char]

References For more information about reading and interpreting NCBI BLAST
reports, see:

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Blast_output.html

See Also Bioinformatics Toolbox functions: blastncbi, getblast

2-97

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Blast_output.html

blosum

Purpose BLOSUM scoring matrix

Syntax Matrix = blosum(Identity)
[Matrix, MatrixInfo] = blosum(Identity)
blosum(..., 'PropertyName', PropertyValue,...)
blosum(..., 'Extended', ExtendedValue)
blosum(..., 'Order', OrderValue)

Arguments
Identity Percent identity level. Enter values from 30

to 90 in increments of 5, enter 62, or enter 100.

ExtendedValue Property to control the listing of extended
amino acid codes. Enter either true (default)
or false.

OrderValue Property to specify the order amino acids are
listed in the matrix. Enter a character string of
legal amino acid characters. The length is 20
or 24 characters.

Description Matrix = blosum(Identity) returns a BLOSUM (Blocks Substitution
Matrix) matrix with a specified percent identity. The default ordering of
the output includes the extended characters B, Z, X, and *.

A R N D C Q E G H I L K M F P S T W Y V B Z X *

[Matrix, MatrixInfo] = blosum(Identity) returns a structure of
information (MatrixInfo) about a BLOSUM matrix (Matrix) with
the fields Name, Scale, Entropy, ExpectedScore, HighestScore,
LowestScore, and Order.

blosum(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

2-98

blosum

blosum(..., 'Extended', ExtendedValue), if Extended is false,
returns the scoring matrix for the standard 20 amino acids. Ordering of
the output when Extended is false is

A R N D C Q E G H I L K M F P S T W Y V

blosum(..., 'Order', OrderValue) returns a BLOSUM matrix
ordered by an amino acid sequence (OrderString).

Examples Return a BLOSUM matrix with a value of 50.

B50 = blosum(50)

Return a BLOSUM matrix with the amino acids in a specific order.

B75 = blosum(75,'Order','CSTPAGNDEQHRKMILVFYW')

See Also Bioinformatics Toolbox functions dayhoff, gonnet, nwalign, pam,
swalign

2-99

celintensityread

Purpose Read probe intensities from Affymetrix CEL files

Syntax ProbeStructure = celintensityread(CELFiles, CDFFile)
ProbeStructure = celintensityread(..., 'CELPath',
CELPathValue, ...)
ProbeStructure = celintensityread(..., 'CDFPath',

CDFPathValue, ...)
ProbeStructure = celintensityread(..., 'PMOnly',
PMOnlyValue,

...)
ProbeStructure = celintensityread(..., 'Verbose',

VerboseValue, ...)

Arguments CELFiles Any of the following:
• String specifying a single CEL file name.

• '*', which reads all CEL files in the current
directory.

• ' ', which opens the Select CEL Files dialog
box from which you select the CEL files. From
this dialog box, you can press and hold Ctrl
or Shift while clicking to select multiple CEL
files.

• Cell array of CEL file names.

CDFFile Either of the following:
• String specifying a CDF file name.

• ' ', which opens the Select CDF File dialog
box from which you select the CDF file.

CELPathValue String specifying the path and directory where
the files specified in CELFiles are stored.

CDFPathValue String specifying the path and directory where
the file specified in CDFFile is stored.

2-100

celintensityread

PMOnlyValue Property to include or exclude the mismatch (MM)
probe intensity values in the returned structure.
Enter true to return only perfect match (PM)
probe intensities. Enter false to return both PM
and MM probe intensities. Default is true.

VerboseValue Controls the display of a progress report showing
the name of each CEL file as it is read. When
VerboseValue is false, no progress report is
displayed. Default is true.

Return
Values

ProbeStructure MATLAB structure containing information from
the CEL files, including probe intensities, probe
indices, and probe set IDs.

Description
Note This function does not work on the Solaris platform.

ProbeStructure = celintensityread(CELFiles, CDFFile) reads
the specified Affymetrix CEL files and the associated CDF library file
(created from Affymetrix GeneChip arrays for expression or genotyping
assays), and then creates ProbeStructure, a structure containing
information from the CEL files, including probe intensities, probe
indices, and probe set IDs. CELFiles is a string or cell array of CEL file
names. CDFFile is a string specifying a CDF file name.

If you set CELFiles to '*', then it reads all CEL files in the current
directory. If you set CELFiles to ' ', then it opens the Select CEL Files
dialog box from which you select the CEL files. From this dialog box,
you can press and hold Ctrl or Shift while clicking to select multiple
CEL files.

If you set CDFFile to ' ', then it opens the Select CDF File dialog box
from which you select the CDF file.

2-101

celintensityread

ProbeStructure = celintensityread(..., 'PropertyName',
PropertyValue, ...) calls celintensityread with optional
properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must
be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

ProbeStructure = celintensityread(..., 'CELPath', CELPathValue,
...) specifies a path and directory where the files specified in CELFiles
are stored.

ProbeStructure = celintensityread(..., 'CDFPath', CDFPathValue,
...) specifies a path and directory where the file specified in CDFFile is
stored.

ProbeStructure = celintensityread(..., 'PMOnly',
PMOnlyValue, ...) includes or excludes the mismatch (MM) probe
intensity values. When PMOnlyValue is true, celintensityread
returns only perfect match (PM) probe intensities. When PMOnlyValue
is false, celintensityread returns both PM and MM probe
intensities. Default is true.

You can learn more about the Affymetrix CEL files and download
sample files from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

Note Some Affymetrix CEL files are combined with other data files in
a DTT or CAB file. You must download and use the Affymetrix Data
Transfer Tool to extract these files from the DTT or CAB file. You can
download the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/products/software/specific/dtt.affx

You will have to register and log in at the Affymetrix Web site to
download the Affymetrix Data Transfer Tool.

2-102

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/products/software/specific/dtt.affx

celintensityread

ProbeStructure contains the following fields.

Field Description

CDFName File name of the Affymetrix CDF library file.

CELNames Cell array of names of the Affymetrix CEL files.

NumProbeSets Number of probe sets in each CEL file.

ProbeSetIDs Cell array of the probe set IDs from the Affymetrix
CDF library file.

ProbeIndices Column vector containing probe indexing
information. Probes within a probe set are
numbered 0 through N - 1, where N is the number
of probes in the probe set.

PMIntensities Matrix containing PM probe intensity values.
Each row corresponds to a probe, and each column
corresponds to a CEL file. The rows are ordered the
same way as in ProbeIndices, and the columns
are ordered the same way as in the CELFiles input
argument.

MMIntensities Matrix containing MM probe intensity values.
Each row corresponds to a probe, and each column
corresponds to a CEL file. The rows are ordered the
same way as in ProbeIndices, and the columns
are ordered the same way as in the CELFiles input
argument.

ProbeStructure = celintensityread(..., 'Verbose',
VerboseValue, ...) controls the display of a progress report showing
the name of each CEL file as it is read. When VerboseValue is false,
no progress report is displayed. Default is true.

Examples The following example assumes that you have the HG_U95Av2.CDF
library file stored at D:\Affymetrix\LibFiles\HGGenome, and
that your current directory points to a location containing CEL
files associated with this CDF library file. In this example, the

2-103

celintensityread

celintensityread function reads all the CEL files in the current
directory and a CDF file in a specified directory. The next command line
uses the rmabackadj function to perform background adjustment on the
PM probe intensities in the PMIntensities field of PMProbeStructure.

PMProbeStructure = celintensityread('*', 'HG_U95Av2.CDF',...
'CDFPath', 'D:\Affymetrix\LibFiles\HGGenome');

BackAdjustedMatrix = rmabackadj(PMProbeStructure.PMIntensities);

The following example lets you select CEL files and a CDF file to read
using Open File dialog boxes:

PMProbeStructure = celintensityread(' ', ' ');

See Also Bioinformatics Toolbox functions: affyinvarsetnorm,
affyprobeseqread, affyread, agferead, gcrma, gcrmabackadj,
gprread, probelibraryinfo, probesetlink, probesetlookup,
probesetplot, probesetvalues, rmabackadj, rmasummary, sptread

2-104

classperf

Purpose Evaluate performance of classifier

Syntax classperf
cp = classperf(groundtruth)
classperf(cp, classout)
classperf(cp, classout, testidx)
cp = classperf(groundtruth, classout,...)
cp = classperf(..., 'Positive', PositiveValue, 'Negative',

NegativeValue)

Description classperf provides an interface to keep track of the performance
during the validation of classifiers. classperf creates and updates
a classifier performance object (CP) that accumulates the results of
the classifier. Later, classification standard performance parameters
can be accessed using the function get or as fields in structures.
Some of these performance parameters are ErrorRate, CorrectRate,
ErrorDistributionByClass, Sensitivity and Specificity. classperf,
without input arguments, displays all the available performance
parameters.

cp = classperf(groundtruth) creates and initializes an empty object.
CP is the handle to the object. groundtruth is a vector containing the
true class labels for every observation. groundtruth can be a numeric
vector or a cell array of strings. When used in a cross-validation design
experiment, groundtruth should have the same size as the total
number of observations.

classperf(cp, classout) updates the CP object with the classifier
output classout. classout is the same size and type as groundtruth.
When classout is numeric and groundtruth is a cell array of strings,
the function grp2idx is used to create the index vector that links
classout to the class labels. When classout is a cell array of strings,
an empty string, '', represents an inconclusive result of the classifier.
For numeric arrays, NaN represents an inconclusive result.

classperf(cp, classout, testidx) updates the CP object with
the classifier output classout. classout has smaller size than
groundtruth, and testidx is an index vector or a logical index vector of

2-105

classperf

the same size as groundtruth, which indicates the observations that
were used in the current validation.

cp = classperf(groundtruth, classout,...) creates and updates
the CP object with the first validation. This form is useful when you
want to know the performance of a single validation.

cp = classperf(..., 'Positive', PositiveValue, 'Negative',
NegativeValue) sets the 'positive' and 'negative' labels to identify
the target disorder and the control classes. These labels are used to
compute clinical diagnostic test performance. p and n must consist of
disjoint sets of the labels used in groundtruth. For example, if

groundtruth = [1 2 2 1 3 4 4 1 3 3 3 2]

you could set

p = [1 2];
n = [3 4];

If groundtruth is a cell array of strings, p and n can either be cell
arrays of strings or numeric vectors whose entries are subsets of
grp2idx(groundtruth). PositiveValue defaults to the first class
returned by grp2idx(groundtruth), while NegativeValue defaults
to all the others. In clinical tests, inconclusive values ('' or NaN)
are counted as false negatives for the computation of the specificity
and as false positives for the computation of the sensitivity, that is,
inconclusive results may decrease the diagnostic value of the test.
Tested observations for which true class is not within the union of
PositiveValue and NegativeValue are not considered. However,
tested observations that result in a class not covered by the vector
groundtruth are counted as inconclusive.

Examples % Classify the fisheriris data with a K-Nearest Neighbor

classifier load fisheriris

c = knnclassify(meas,meas,species,4,'euclidean','Consensus');

cp = classperf(species,c)

get(cp)

2-106

classperf

% 10-fold cross-validation on the fisheriris data using linear

% discriminant analysis and the third column as only feature for

% classification

load fisheriris

indices = crossvalind('Kfold',species,10);

cp = classperf(species); % initializes the CP object

for i = 1:10

test = (indices == i); train = ~test;

class = classify(meas(test,3),meas(train,3),species(train));

% updates the CP object with the current classification results

classperf(cp,class,test)

end

cp.CorrectRate % queries for the correct classification rate

cp =

biolearning.classperformance

Label: ''

Description: ''

ClassLabels: {3x1 cell}

GroundTruth: [150x1 double]

NumberOfObservations: 150

ControlClasses: [2x1 double]

TargetClasses: 1

ValidationCounter: 1

SampleDistribution: [150x1 double]

ErrorDistribution: [150x1 double]

SampleDistributionByClass: [3x1 double]

ErrorDistributionByClass: [3x1 double]

CountingMatrix: [4x3 double]

CorrectRate: 1

ErrorRate: 0

InconclusiveRate: 0.0733

ClassifiedRate: 0.9267

Sensitivity: 1

2-107

classperf

Specificity: 0.8900

PositivePredictiveValue: 0.8197

NegativePredictiveValue: 1

PositiveLikelihood: 9.0909

NegativeLikelihood: 0

Prevalence: 0.3333

DiagnosticTable: [2x2 double]

ans =

0.9467

See Also Bioinformatics Toolbox functions knnclassify, svmclassify,
crossvalind

Statistics Toolbox functions grp2idx, classify

2-108

cleave

Purpose Cleave amino acid sequence with enzyme

Syntax Fragments = cleave(SeqAA, PeptidePattern, Position)
[Fragments, CuttingSites] = cleave(...)
[Fragments, CuttingSites, Lengths] = cleave(...)
cleave(..., 'PropertyName', PropertyValue,...)
cleave(..., 'PartialDigest', PartialDigestValue)

Arguments SeqAA Amino acid sequence. Enter a character
string or a vector of integers from the table .

Examples: 'ARN' or [1 2 3]. You can also
enter a structure with the field Sequence.

PeptidePattern Short amino acid sequence to search in a
larger sequence. Enter a character string,
vector of integers, or a regular expression.

Position Position on the PeptidePattern where
the sequence is cleaved. Enter a position
within the PeptidePattern. Position 0
corresponds to the N terminal end of the
PepetidePattern.

PartialDigestValue Property to specify the probability that a
cleavage site will be cleaved. Enter a value
from 0 to 1 (default).

Description Fragments = cleave(SeqAA, PeptidePattern, Position) cuts an
amino acid sequence (SeqAA) into parts at the specified cleavage site
specified by a peptide pattern and position.

[Fragments, CuttingSites] = cleave(...) returns a numeric
vector with the indices representing the cleave sites. A 0 (zero) is added
to the list, so numel(Fragments)==numel(CuttingSites). You can use
CuttingSites + 1 to point to the first amino acid of every fragment
respective to the original sequence.

2-109

cleave

[Fragments, CuttingSites, Lengths] = cleave(...) returns a
numeric vector with the lengths of every fragment.

cleave(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

cleave(..., 'PartialDigest', PartialDigestValue) simulates a
partial digestion where PartialDigest is the probability of a cleavage
site being cut.

The following table lists some common proteases and their cleavage
sites.

Protease Peptide Pattern Position

Trypsin [KR](?!P) 1

Chymotrypsin [WYF](?!P) 1

Glutamine C [ED](?!P) 1

Lysine C [K](?!P) 1

Aspartic acid N D 1

Examples 1 Get a protein sequence from the GenPept database.

S = getgenpept('AAA59174')

2 Cleave the sequence using trypsin. Trypsin cleaves after K or R when
the next residue is not P.

[parts, sites, lengths] = cleave(S.Sequence,'[KR](?!P)',1);
for i=1:10

fprintf('%5d%5d %s\n',sites(i),lengths(i),parts{i})
end

0 6 MGTGGR
6 1 R
7 34 GAAAAPLLVAVAALLLGAAGHLYPGEVCPGMDIR

41 5 NNLTR

2-110

cleave

46 21 LHELENCSVIEGHLQILLMFK
67 7 TRPEDFR
74 6 DLSFPK
80 12 LIMITDYLLLFR
92 8 VYGLESLK

100 10 DLFPNLTVIR

See Also Bioinformatics Toolbox functions: rebasecuts, restrict,
seqshowwords

MATLAB function: regexp

2-111

clustergram

Purpose Create dendrogram and heat map

Syntax clustergram(Data)
clustergram(Data, ...'RowLabels', RowLabelsValue, ...)
clustergram(Data, ...'ColumnLabels',
ColumnLabelsValue, ...)
clustergram(Data, ...'Pdist', PdistValue, ...)
clustergram(Data, ...'Linkage', LinkageValue, ...)
clustergram(Data, ...'Dendrogram', DendrogramValue, ...)
clustergram(Data, ...'OptimalLeafOrder',

OptimalLeafOrderValue, ...)
clustergram(Data, ...'ColorMap', ColorMapValue, ...)
clustergram(Data, ...'SymmetricRange', SymmetricRangeValue,

...)
clustergram(Data, ...'Dimension', DimensionValue, ...)
clustergram(Data, ...'Ratio', RatioValue, ...)

Arguments
Data Matrix in which each row corresponds to

a gene and each column corresponds to a
single experiment or microarray.

RowLabelsValue Vector of numbers or cell array of text
strings to label the rows in Data.

ColumnLabelsValue Vector of numbers or cell array of text
strings to label the columns in Data.

2-112

clustergram

PdistValue String to specify the distance metric to pass
to the pdist function (Statistics Toolbox)
to use to calculate the pair-wise distances
between observations. For information on
choices, see the pdist function. Default is
euclidean.

Note If the distance metric requires extra
arguments, then PdistValue is a cell
array. For example, to use the Minkowski
distance with exponent P, you would use
{'minkowski', P}.

LinkageValue String to specify the linkage method to
pass to the linkage function (Statistics
Toolbox) to use to create the hierarchical
cluster tree. For information on choices, see
the linkage function. Default is average.

DendrogramValue Cell array of property name/property
value pairs to pass to the dendrogram
function (Statistics Toolbox) to create the
dendrogram plot. For information on
choices, see the dendrogram function.

2-113

clustergram

OptimalLeafOrderValue Property to enable or disable the optimal
leaf ordering calculation, which determines
the leaf order that maximizes the similarity
between neighboring leaves. Choices are
true (enable) or false (disable). Default
depends on the size of Data. If the number
of rows or columns in Data is greater than
1000, default is false; otherwise, default
is true.

Note Disabling the optimal leaf ordering
calculation can be useful when working
with large data sets because this
calculation uses a large amount of memory
and can be very time consuming.

ColorMapValue Either of the following:
• M-by-3 matrix of RGB values

• Name or function handle of a function
that returns a color map

Default is redgreencmap.

SymmetricRangeValue Property to force the color range of the heat
map to be symmetric around zero. Choices
are true (default) or false.

2-114

clustergram

DimensionValue Property to specify either a
one-dimensional or two-dimensional
clustergram. Choices are 1 (default) or 2.

RatioValue Either of the following:
• Scalar

• Two-element vector

Default is 1/5.

Description clustergram(Data) creates a dendrogram and heat map from the gene
expression data in the matrix Data. It uses hierarchical clustering
with euclidean distance metric and average linkage to generate the
hierarchical tree. The clustering is performed on the rows in matrix
Data, in which the rows correspond to genes and the columns correspond
to different microarrays. To cluster the columns instead of the rows,
transpose the data using the transpose (') operator.

clustergram(Data, ...'PropertyName', PropertyValue, ...)
calls clustergram with optional properties that use property
name/property value pairs. You can specify one or more properties in
any order. Each PropertyName must be enclosed in single quotation
marks and is case insensitive. These property name/property value
pairs are as follows:

clustergram(Data, ...'RowLabels', RowLabelsValue, ...) uses
the contents of RowLabelsValue, a vector of numbers or cell array of
text strings, as labels for the rows in Data.

clustergram(Data, ...'ColumnLabels', ColumnLabelsValue,
...) uses the contents of ColumnLabelsValue, a vector of numbers or
cell array of text strings, as labels for the columns in Data.

clustergram(Data, ...'Pdist', PdistValue, ...) specifies the
distance metric to pass to the pdist function (Statistics Toolbox) to use
to calculate the pair-wise distances between observations. PdistValue
is a string. For information on choices, see the pdist function. Default
is euclidean.

2-115

clustergram

Note If the distance metric requires extra arguments, then PdistValue
is a cell array. For example, to use the Minkowski distance with
exponent P, you would use {'minkowski', P}.

clustergram(Data, ...'Linkage', LinkageValue, ...) specifies
the linkage method to pass to the linkage function (Statistics Toolbox)
to use to create the hierarchical cluster tree. LinkageValue is a
string. For information on choices, see the linkage function. Default
is average.

clustergram(Data, ...'Dendrogram', DendrogramValue,
...) specifies property name/property value pairs to pass to the
dendrogram function (Statistics Toolbox) to create the dendrogram plot.
DendrogramValue is a cell array of property name/property value pairs.
For information on choices, see the dendrogram function.

clustergram(Data, ...'OptimalLeafOrder',
OptimalLeafOrderValue, ...) enables or disables the optimal leaf
ordering calculation, which determines the leaf order that maximizes
the similarity between neighboring leaves. Choices are true (enable) or
false (disable). Default depends on the size of Data. If the number
of rows or columns in Data is greater than 1000, default is false;
otherwise, default is true.

Note Disabling the optimal leaf ordering calculation can be useful
when working with large data sets because this calculation uses a large
amount of memory and can be very time consuming.

clustergram(Data, ...'ColorMap', ColorMapValue, ...) specifies
the color map to use to create the clustergram. This controls the colors
used to display the heat map. ColorMapValue is either a M-by-3 matrix
of RGB values or the name or function handle of a function that returns
a color map. Default is redgreencmap.

2-116

clustergram

clustergram(Data, ...'SymmetricRange', SymmetricRangeValue,
...), controls whether the color range of the heat map is symmetric
around zero. SymmetricRangeValue can be true (default) or false.

clustergram(Data, ...'Dimension', DimensionValue, ...)
specifies whether to create a one-dimensional or two-dimensional
clustergram. Choices are 1 (default) or 2. The one-dimensional
clustergram clusters the rows of the data. The two-dimensional
clustergram creates the one-dimensional clustergram, and then clusters
the columns of the row-clustered data.

clustergram(Data, ...'Ratio', RatioValue, ...) specifies the
ratio of the space that the dendrogram(s) use in the X and Y directions,
relative to the size of the heat map. If RatioValue is a scalar, it is used
as the ratio for both directions. If RatioValue is a two-element vector,
the first element is used for the X ratio, and the second element is used
for the Y ratio. The Y ratio is ignored for one-dimensional clustergrams.
Default ratio is 1/5.

Tip Click and hold the mouse button on the heat map to display the
intensity value, column label, and row label for that area of the heat
map. View row labels by using the zoom icon to zoom the right side
of the clustergram.

Examples The following example uses data from an experiment (DeRisi et al.,
1997) that used DNA microarrays to study temporal gene expression of
almost all genes in Saccharomyces cerevisiae during the metabolic shift
from fermentation to respiration. Expression levels were measured at
seven time points during the diauxic shift.

1 Load the filtered yeast data provided with Bioinformatics Toolbox,
and then create a clustergram from the gene expression data in the
yeastvalues matrix.

load filteredyeastdata
clustergram(yeastvalues)

2-117

clustergram

2 Add labels to the clustergram, then click and hold the mouse button
on the heat map to display the intensity value, column label, and row
label for that area of the heat map. View the row labels by using the
Zoom icon to zoom the right side of the clustergram.

clustergram(yeastvalues,'RowLabels',genes,'ColumnLabels',times)

2-118

clustergram

3 Change the clustering parameters.

clustergram(yeastvalues,'Linkage','complete')

2-119

clustergram

4 Change the color of the groups of nodes in the dendrogram whose
linkage is less than a threshold of 5.

clustergram(yeastvalues,'RowLabels',genes,...
'Dendrogram',{'colorthreshold',5})

2-120

clustergram

References [1] Bar-Joseph, Z., Gifford, D.K., and Jaakkola, T.S. (2001). Fast optimal
leaf ordering for hierarchical clustering. Bioinformatics 17, Suppl 1:S22
– 9. PMID: 11472989.

[2] Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998).
Cluster analysis and display of genome-wide expression patterns. Proc
Natl Acad Sci USA 95, 14863 – 8.

2-121

clustergram

[3] DeRisi, J.L., Iyer, V.R., and Brown, P.O. (1997) Exploring the
metabolic and genetic control of gene expression on a genomic scale.
Science 278, 680–686s.

See Also Bioinformatics Toolbox function: redgreencmap

Statistics Toolbox functions: cluster, dendrogram, linkage, pdist

2-122

codonbias

Purpose Calculate codon frequency for each amino acid in DNA sequence

Syntax codonbias(SeqDNA)
codonbias(..., 'PropertyName', PropertyValue,...)
codonbias(..., 'GeneticCode', GeneticCodeValue)
codonbias(..., 'Frame', FrameValue)
codonbias(..., 'Reverse', ReverseValue)
codonbias(..., 'Pie', PieValue)

Arguments
SeqDNA Nucleotide sequence (DNA or RNA). Enter a character

string with the letters A, T or U, C, and G or a vector
of integers. You can also enter a structure with the
field Sequence. codonbias does not count ambiguous
bases or gaps.

Description Many amino acids are coded by two or more nucleic acid codons.
However, the probability that a codon (from the various possible codons
for an amino acid) is used to code an amino acid is different between
sequences. Knowing the frequency of each codon in a protein coding
sequence for each amino acid is a useful statistic.

codonbias(SeqDNA) calculates the codon frequency in percent for each
amino acid in a DNA sequence (SeqDNA).

codonbias(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

codonbias(..., 'GeneticCode', GeneticCodeValue) selects an
alternative genetic code (GenetidCodeValue). The default value is
'Standard' or 1. For a list of genetic codes, see .

codonbias(..., 'Frame', FrameValue) selects a reading frame
(FrameValue). FrameValue can be 1 (default), 2, or 3.

codonbias(..., 'Reverse', ReverseValue), when ReverseValue is
true, returns the codon frequency for the reverse complement of the
DNA sequence (SeqDNA).

2-123

codonbias

codonbias(..., 'Pie', PieValue), when PieValue is true, creates
a figure of 20 pie charts for each amino acid.

Example 1 Import a nucleotide sequence from GenBank to MATLAB. For
example, get the DNA sequence that codes for a human insulin
receptor.

S = getgenbank('M10051');

2 Calculate the codon frequency for each amino acid and plot the
results.

cb = codonbias(S.Sequence,'PIE',true)

cb.Ala
ans =

Codon: {'GCA' "GCC' "GCG' 'GCT'}
Freq: [0.1600 0.3867 0.2533 02000]

MATLAB draws a figure with 20 pie charts for the 20 amino acids.

2-124

codonbias

See Also Bioinformatics Toolbox functions aminolookup, codoncount,
geneticcode, nt2aa

2-125

codoncount

Purpose Count codons in nucleotide sequence

Syntax Codons = codoncount(SeqNT)
codoncount(..., 'PropertyName', PropertyValue,...)
codoncount(..., 'Frame', FrameValue)
codoncount(..., 'Reverse', ReverseValue)
codoncount(..., 'Figure', FigureValue)

Arguments SeqNT Nucleotide sequence. Enter a character string or
vector of integers. You can also enter a structure
with the field Sequence.

FrameValue Property to select a reading frame. Enter 1 (default),
2, or 3.

ReverseValue Property to control returning the complement
sequence. Enter true or false (default).

FigureValue Property to control plotting a heat map. Enter
either true or false (default).

Description Codons = codoncount(SeqNT) counts the number of codon in a
sequence (SeqNT) and returns the codon counts in a structure with the
fields AAA, AAC, AAG, ..., TTG, TTT.

• For sequences that have codons with the character U, the U characters
are added to codons with T characters.

• If the sequence contains ambiguous nucleotide characters (R Y K M
S W B D H V N) , or gaps indicated with a hyphen (-), this function
creates a field Others and displays a warning message.

Warning: Ambiguous symbols 'symbol' appear
in the sequence.
These will be in Others.

2-126

codoncount

• If the sequence contains undefined nucleotide characters (E F H I
J L O P Q X Z), codoncount ignores the characters and displays a
warning message.

Warning: Unknown symbols 'symbol' appear
in the sequence.
These will be ignored.

[Codons, CodonArray] = codoncount(SeqNT) returns a 4x4x4 array
(CodonArray) with the raw count data for each codon. The three
dimensions correspond to the three positions in the codon. For example,
the element (2,3,4) of the array gives the number of CGT codons where
A <=> 1, C <=> 2, G <=> 3, and T <=> 4.

codoncount(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

codoncount(..., 'Frame', FrameValue) counts the codons in a
specific reading frame.

codoncount(..., 'Reverse', ReverseValue), when ReverseValue is
true, counts the codons for the reverse complement of the sequence.

codoncount(..., 'Figure', FigureValue), when FigureValue is
true displays a figure showing a heat map of the codon counts.

Examples Count the number of standard codons in a nucleotide sequence.

codons = codoncount('AAACGTTA')

codons =
AAA: 1 ATC: 0 CGG: 0 GCT: 0 TCA: 0
AAC: 0 ATG: 0 CGT: 1 GGA: 0 TCC: 0
AAG: 0 ATT: 0 CTA: 0 GGC: 0 TCG: 0
AAT: 0 CAA: 0 CTC: 0 GGG: 0 TCT: 0
ACA: 0 CAC: 0 CTG: 0 GGT: 0 TGA: 0
ACC: 0 CAG: 0 CTT: 0 GTA: 0 TGC: 0
ACG: 0 CAT: 0 GAA: 0 GTC: 0 TGG: 0
ACT: 0 CCA: 0 GAC: 0 GTG: 0 TGT: 0

2-127

codoncount

AGA: 0 CCC: 0 GAG: 0 GTT: 0 TTA: 0
AGC: 0 CCG: 0 GAT: 0 TAA: 0 TTC: 0
AGG: 0 CCT: 0 GCA: 0 TAC: 0 TTG: 0
AGT: 0 CGA: 0 GCC: 0 TAG: 0 TTT: 0
ATA: 0 CGC: 0 GCG: 0 TAT: 0

Count the codons in the second frame for the reverse complement of
a sequence.

r2codons = codoncount('AAACGTTA', 'Frame',2,...
'Reverse',true);

Create a heat map for the codons in a nucleotide sequence.

a = randseq(1000);
codoncount(a,'Figure', true);

2-128

codoncount

See Also Bioinformatics Toolbox functions aacount , basecount, baselookup,
codonbias, dimercount, nmercount, ntdensity, seqrcomplement,
seqwordcount

2-129

cpgisland

Purpose Locate CpG islands in DNA sequence

Syntax cpgisland(SeqDNA)
cpgisland(..., 'PropertyName', PropertyValue,...)
cpgisland(..., 'Window', WindowValue)
cpgisland(..., 'MinIsland', MinIslandValue)
cpgisland(..., 'CpGoe', CpGoeValue)
cpgisland(..., 'GCmin', GCminValue)
cpgisland(..., 'Plot', PlotValue)

Arguments
SeqDNA DNA nucleotide sequence. Enter a character

string with the letters A, T, C, and G. You can
also enter a structure with the field Sequence.
cpgisland does not count ambiguous bases or
gaps.

Description cpgisland(SeqDNA) finds CpG islands by marking bases within a
moving window of 100 DNA bases with a GC content greater than 50%
and a CpGobserved/CpGexpected ratio greater than 60%.

cpgisland(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

cpgisland(..., 'Window', WindowValue) specifies the window size
for calculating GC percent and CpGobserved/CpGexpected ratios for
a sequence. The default value is 100 bases. A smaller window size
increases the noise in a plot.

cpgisland(..., 'MinIsland', MinIslandValue) specifies the
minimum number of consecutive marked bases to report. The default
value is 200 bases.

cpgisland(..., 'CpGoe', CpGoeValue) specifies the minimum
CpGobserved/CpGexpected ratio in each window needed to mark a
base. Enter a value between 0 and 1. The default value is 0.6. This
ratio is defined as

2-130

cpgisland

CPGobs/CpGexp = (NumCpGs*Length)/(NumGs*NumCs)

cpgisland(..., 'GCmin', GCminValue) specifies the minimum GC
percent in a window needed to mark a base. Enter a value between 0
and 1. The default value is 0.5.

cpgisland(..., 'Plot', PlotValue), when Plot is true, plots GC
content, CpGoe content, CpG islands greater than the minimum island
size, and all potential CpG islands for the specified criteria.

Example 1 Import a nucleotide sequence from GenBank. For example, get a
sequence from Homo Sapiens chromosome 12.

S = getgenbank('AC156455');

2 Calculate the CpG islands in the sequence and plot the results.

cpgisland(S.Sequence,'PLOT',true)

MATLAB lists the CpG islands greater than 200 bases and draws a
figure.

ans =
Starts: [4470 28753 29347 36229]
Stops: [5555 29064 29676 36450]

2-131

cpgisland

See Also Bioinformatics Toolbox functions: basecount, ntdensity, seqshoworfs

2-132

crossvalind

Purpose Generate cross-validation indices

Syntax Indices = crossvalind('Kfold', N, K)
[Train, Test] = crossvalind('HoldOut', N, P)
[Train, Test] = crossvalind('LeaveMOut', N, M)
[Train, Test] = crossvalind('Resubstitution', N, [P,Q])
[...] = crossvalind(Method, Group, ...)
[...] = crossvalind(Method, Group, ..., 'Classes', C)
[...] = crossvalind(Method, Group, ..., 'Min', MinValue)

Description Indices = crossvalind('Kfold', N, K) returns randomly generated
indices for a K-fold cross-validation of N observations. Indices contains
equal (or approximately equal) proportions of the integers 1 through
K that define a partition of the N observations into K disjoint subsets.
Repeated calls return different randomly generated partitions. K
defaults to 5 when omitted. In K-fold cross-validation, K-1 folds are
used for training and the last fold is used for evaluation. This process is
repeated K times, leaving one different fold for evaluation each time.

[Train, Test] = crossvalind('HoldOut', N, P) returns logical
index vectors for cross-validation of N observations by randomly
selecting P*N (approximately) observations to hold out for the evaluation
set. P must be a scalar between 0 and 1. P defaults to 0.5 when omitted,
corresponding to holding 50% out. Using holdout cross-validation within
a loop is similar to K-fold cross-validation one time outside the loop,
except that non-disjointed subsets are assigned to each evaluation.

[Train, Test] = crossvalind('LeaveMOut', N, M), where M is
an integer, returns logical index vectors for cross-validation of N
observations by randomly selecting M of the observations to hold out for
the evaluation set. M defaults to 1 when omitted. Using LeaveMOut
cross-validation within a loop does not guarantee disjointed evaluation
sets. Use K-fold instead.

[Train, Test] = crossvalind('Resubstitution', N, [P,Q])
returns logical index vectors of indices for cross-validation of N
observations by randomly selecting P*N observations for the evaluation
set and Q*N observations for training. Sets are selected in order to

2-133

crossvalind

minimize the number of observations that are used in both sets. P
and Q are scalars between 0 and 1. Q=1-P corresponds to holding
out (100*P)%, while P=Q=1 corresponds to full resubstitution. [P,Q]
defaults to [1,1] when omitted.

[...] = crossvalind(Method, Group, ...) takes the group
structure of the data into account. Group is a grouping vector that
defines the class for each observation. Group can be a numeric vector,
a string array, or a cell array of strings. The partition of the groups
depends on the type of cross-validation: For K-fold, each group is
divided into K subsets, approximately equal in size. For all others,
approximately equal numbers of observations from each group are
selected for the evaluation set. In both cases the training set contains at
least one observation from each group.

[...] = crossvalind(Method, Group, ..., 'Classes', C)
restricts the observations to only those values specified in C. C can be a
numeric vector, a string array, or a cell array of strings, but it is of the
same form as Group. If one output argument is specified, it contains the
value 0 for observations belonging to excluded classes. If two output
arguments are specified, both will contain the logical value false for
observations belonging to excluded classes.

[...] = crossvalind(Method, Group, ..., 'Min', MinValue)
sets the minimum number of observations that each group has in the
training set. Min defaults to 1. Setting a large value for Min can help to
balance the training groups, but adds partial resubstitution when there
are not enough observations. You cannot set Min when using K-fold
cross-validation.

Examples Create a 10-fold cross-validation to compute classification error.

load fisheriris
indices = crossvalind('Kfold',species,10);
cp = classperf(species);
for i = 1:10

test = (indices == i); train = ~test;
class = classify(meas(test,:),meas(train,:),species(train,:));

2-134

crossvalind

classperf(cp,class,test)
end
cp.ErrorRate

Approximate a leave-one-out prediction error estimate.

load carbig
x = Displacement; y = Acceleration;
N = length(x);
sse = 0;
for i = 1:100

[train,test] = crossvalind('LeaveMOut',N,1);
yhat = polyval(polyfit(x(train),y(train),2),x(test));
sse = sse + sum((yhat - y(test)).^2);

end
CVerr = sse / 100

Divide cancer data 60/40 without using the 'Benign' observations.
Assume groups are the true labels of the observations.

labels = {'Cancer','Benign','Control'};
groups = labels(ceil(rand(100,1)*3));
[train,test] = crossvalind('holdout',groups,0.6,'classes',...

{'Control','Cancer'});
sum(test) % Total groups allocated for testing
sum(train) % Total groups allocated for training

See Also Bioinformatics Toolbox functions: classperf, knnclassify,
svmclassify

Statistics Toolbox functions: classify, grp2idx

2-135

dayhoff

Purpose Dayhoff scoring matrix

Syntax ScoringMatrix = dayhoff

Description ScoringMatrix = dayhoff returns a PAM250 type scoring matrix. The
order of amino acids in the matrix is A R N D C Q E G H I L K M
F P S T W Y V B Z X *.

See Also Bioinformatics Toolbox functions: blosum, gonnet, pam

2-136

dimercount

Purpose Count dimers in sequence

Syntax Dimers = dimercount(SeqNT)
[Dimers, Percent] = dimercount(SeqNT)
dimercount(..., 'PropertyName', PropertyValue,...)
dimercount(..., 'Chart', ChartStyle)

Arguments
SeqNT Nucleotide sequence. Enter a character string

or vector of integers.

Examples: 'ACGT' and [1 2 3 4].You can
also enter a structure with the field
Sequence.

ChartStyleValue Property to select the type of plot. Enter 'pie'
or 'bar'.

Description Dimers = dimercount(SeqNT) counts the number of nucleotide dimers
in a 1-by-1 sequence and returns the dimer counts in a structure with
the fields AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT.

• For sequences that have dimers with the character U, the U characters
are added to dimers with T characters.

• If the sequence contains ambiguous nucleotide characters (R Y K M
S W B D H V N) , or gaps indicated with a hyphen (-), this function
creates a field Others and displays a warning message.

Warning: Ambiguous symbols 'symbol list' appear
in the sequence.
These will be in Others.

• If the sequence contains undefined nucleotide characters (E F H I
J L O P Q X Z), codoncount ignores the characters and displays a
warning message.

2-137

dimercount

Warning: Unknown symbols 'symbol list' appear
in the sequence.
These will be ignored.

[Dimers, Percent] = dimercount(SeqNT) returns a 4-by-4 matrix
with the relative proportions of the dimers in SeqNT. The rows
correspond to A, C, G, and T in the first element of the dimer, and the
columns correspond to A, C, G, and T in the second element.

dimercount(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

dimercount(..., 'Chart', ChartStyle) creates a chart showing the
relative proportions of the dimers.

Examples Count the number of dimers in a nucleotide sequence.

dimercount('TAGCTGGCCAAGCGAGCTTG')

ans =
AA: 1
AC: 0
AG: 3
AT: 0
CA: 1
CC: 1
CG: 1
CT: 2
GA: 1
GC: 4
GG: 1
GT: 0
TA: 1
TC: 0
TG: 2
TT: 1

2-138

dimercount

See Also Bioinformatics Toolbox functions aacount, basecount, baselookup,
codoncount, nmercount, ntdensity

2-139

dna2rna

Purpose Convert DNA sequence to RNA sequence

Syntax SeqRNA = dna2rna(SeqDNA)

Arguments
SeqDNA DNA sequence. Enter either a character string

with the characters A, T, G, C, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of
integers from the table Mapping Nucleotide Letters
to Integers on page 2-545. You can also enter a
structure with the field Sequence.

SeqRNA RNA sequence.

Description SeqRNA = dna2rna(SeqDNA) converts a DNA sequence to an RNA
sequence by converting any thymine nucleotides (T) in the DNA
sequence to uracil (U). The RNA sequence is returned in the same
format as the DNA sequence. For example, if SeqDNA is a vector of
integers, then so is SeqRNA.

Examples Convert a DNA sequence to an RNA sequence.

rna = dna2rna('ACGATGAGTCATGCTT')

rna =
ACGAUGAGUCAUGCUU

See Also Bioinformatics Toolbox function: rna2dna

MATLAB functions: regexp, strrep

2-140

dnds

Purpose Estimate synonymous and nonsynonymous substitution rates

Syntax [Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2)
[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2,
...'GeneticCode', GeneticCodeValue, ...)
[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Method',

MethodValue, ...)
[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Window',

WindowValue, ...)
[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Verbose',

VerboseValue, ...)

Arguments SeqNT1, SeqNT2 Nucleotide sequences. Enter either a string
or a structure with the field Sequence.

GeneticCodeValue Property to specify a genetic code. Enter a
Code Number or a string with a Code Name
from the table . If you use a Code Name, you
can truncate it to the first two characters.
Default is 1 or Standard.

2-141

dnds

MethodValue String specifying the method for calculating
substitution rates. Choices are:
• NG (default) — Nei-Gojobori method

(1986) uses the number of synonymous
and nonsynonymous substitutions and
the number of potentially synonymous
and nonsynonymous sites. Based on the
Jukes-Cantor model.

• LWL — Li-Wu-Luo method (1985) uses the
number of transitional and transversional
substitutions at three different levels of
degeneracy of the genetic code. Based on
Kimura’s two-parameter model.

• PBL — Pamilo-Bianchi-Li method (1993)
is similar to the Li-Wu-Luo method, but
with bias correction. Use this method
when the number of transitions is much
larger than the number of transversions.

WindowValue Integer specifying the sliding window size,
in codons, for calculating substitution rates
and variances.

VerboseValue Property to control the display of the codons
considered in the computations and their
amino acid translations. Choices are true or
false (default).

Tip Specify true to use this display to
manually verify the codon alignment of the
two input sequences. The presence of stop
codons (*) in the amino acid translation can
indicate that SeqNT1 and SeqNT2 are not
codon-aligned.

2-142

dnds

Return
Values

Dn Nonsynonymous substitution rate(s).

Ds Synonymous substitution rate(s).

Vardn Variance for the nonsynonymous substitution
rate(s).

Vards Variance for the synonymous substitutions
rate(s).

Description [Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2) estimates the
synonymous and nonsynonymous substitution rates per site between
the two homologous nucleotide sequences, SeqNT1 and SeqNT2, by
comparing codons using the Nei-Gojobori method.

dnds returns:

• Dn — Nonsynonymous substitution rate(s).

• Ds — Synonymous substitution rate(s).

• Vardn — Variance for the nonsynonymous substitution rate(s).

• Vards — Variance for the synonymous substitutions rate(s)

This analysis:

• Assumes that the nucleotide sequences, SeqNT1 and SeqNT2, are
codon-aligned, that is, do not have frame shifts.

Tip If your sequences are not codon-aligned, use the nt2aa function
to convert them to amino acid sequences, use the nwalign function
to globally align them, then use the seqinsertgaps function to
recover the corresponding codon-aligned nucleotide sequences. See
Estimating Synonymous and Nonsynonymous Substitution Rates
Between Two Nucleotide Sequences That Are Not Codon-Aligned
on page 2-146.

2-143

dnds

• Excludes codons that include ambiguous nucleotide characters or
gaps

• Considers the number of codons in the shorter of the two nucleotide
sequences

Caution

If SeqNT1 and SeqNT2 are too short or too divergent, saturation can be
reached, and dnds returns NaNs and a warning message.

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2,
...'PropertyName', PropertyValue, ...) calls dnds with optional
properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must
be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2,
...'GeneticCode', GeneticCodeValue, ...) calculates synonymous
and nonsynonymous substitution rates using the specified genetic code.
Enter a Code Number or a string with a Code Name from the table. If
you use a Code Name, you can truncate it to the first two characters.
Default is 1 or Standard.

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Method',
MethodValue, ...) allows you to calculate synonymous and
nonsynonymous substitution rates using the following algorithms:

• NG (default) — Nei-Gojobori method (1986) uses the number of
synonymous and nonsynonymous substitutions and the number of
potentially synonymous and nonsynonymous sites. Based on the
Jukes-Cantor model.

• LWL — Li-Wu-Luo method (1985) uses the number of transitional and
transversional substitutions at three different levels of degeneracy of
the genetic code. Based on Kimura’s two-parameter model.

2-144

dnds

• PBL — Pamilo-Bianchi-Li method (1993) is similar to the Li-Wu-Luo
method, but with bias correction. Use this method when the number
of transitions is much larger than the number of transversions.

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Window',
WindowValue, ...) performs the calculations over a sliding window,
specified in codons. Each output is an array containing a rate or
variance for each window.

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Verbose',
VerboseValue, ...) controls the display of the codons considered in
the computations and their amino acid translations. Choices are true
or false (default).

Tip Specify true to use this display to manually verify the codon
alignment of the two input sequences, SeqNT1 and SeqNT2. The presence
of stop codons (*) in the amino acid translation can indicate that SeqNT1
and SeqNT2 are not codon-aligned.

Examples Estimating Synonymous and Nonsynonymous Substitution
Rates Between the gag Genes of Two HIV Viruses

1 Retrieve two sequences from the GenBank database for the gag
genes of two HIV viruses.

gag1 = getgenbank('L11768');
gag2 = getgenbank('L11770');

2 Estimate the synonymous and nonsynonymous substitution rates
between the two sequences.

[dn ds vardn vards] = dnds(gag1, gag2)

dn =

0.0241

2-145

dnds

ds =

0.0739

vardn =

2.2785e-005

vards =

2.6447e-004

Estimating Synonymous and Nonsynonymous Substitution
Rates Between Two Nucleotide Sequences That Are Not
Codon-Aligned

1 Retrieve two nucleotide sequences from the GenBank database for
the neuraminidase (NA) protein of two strains of the Influenza A
virus (H5N1).

hk01 = getgenbank('AF509094');
vt04 = getgenbank('DQ094287');

2 Extract the coding region from the two nucleotide sequences.

hk01_cds = featuresparse(hk01,'feature','CDS','Sequence',true);
vt04_cds = featuresparse(vt04,'feature','CDS','Sequence',true);

3 Align the amino acids sequences converted from the nucleotide
sequences.

[sc,al] = nwalign(nt2aa(hk01_cds),nt2aa(vt04_cds),'extendgap',1);

4 Use the seqinsertgaps function to copy the gaps from the aligned
amino acid sequences to their corresponding nucleotide sequences,
thus codon-aligning them.

2-146

dnds

hk01_aligned = seqinsertgaps(hk01_cds,al(1,:))
vt04_aligned = seqinsertgaps(vt04_cds,al(3,:))

5 Estimate the synonymous and nonsynonymous substitutions rates of
the codon-aligned nucleotide sequences and also display the codons
considered in the computations and their amino acid translations.

[dn,ds] = dnds(hk01_aligned,vt04_aligned,'verbose',true)

References [1] Li, W., Wu, C., and Luo, C. (1985). A new method for estimating
synonymous and nonsynonymous rates of nucleotide substitution
considering the relative likelihood of nucleotide and codon changes.
Molecular Biology and Evolution 2(2), 150–174.

[2] Nei, M., and Gojobori, T. (1986). Simple methods for estimating the
numbers of synonymous and nonsynonymous nucleotide substitutions.
Molecular Biology and Evolution 3(5), 418–426.

[3] Nei, M., and Jin, L. (1989). Variances of the average numbers of
nucleotide substitutions within and between populations. Molecular
Biology and Evolution 6(3), 290–300.

[4] Nei, M., and Kumar, S. (2000). Synonymous and nonsynonymous
nucleotide substitutions” in Molecular Evolution and Phylogenetics
(Oxford University Press).

[5] Pamilo, P., and Bianchi, N. (1993). Evolution of the Zfx And Zfy
genes: rates and interdependence between the genes. Molecular Biology
and Evolution 10(2), 271–281.

See Also Bioinformatics Toolbox functions: dndsml, featuresparse,
geneticcode, nt2aa, nwalign, seqinsertgaps, seqpdist

2-147

dndsml

Purpose Estimate synonymous and nonsynonymous substitution rates using
maximum likelihood method

Syntax [Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2)
[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2, ...'GeneticCode',
GeneticCodeValue, ...)
[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2, ...'Verbose',

VerboseValue, ...)

Arguments
SeqNT1, SeqNT2 Nucleotide sequences. Enter either a string or a

structure with the field Sequence.

GeneticCodeValue Property to specify a genetic code. Enter a Code
Number or a string with a Code Name from the
table . If you use a Code Name, you can truncate
it to the first two characters. Default is 1 or
Standard.

VerboseValue Property to control the display of the codons
considered in the computations and their amino
acid translations. Choices are true or false
(default).

Tip Specify true to use this display to manually
verify the codon alignment of the two input
sequences. The presence of stop codons (*) in the
amino acid translation can indicate that SeqNT1
and SeqNT2 are not codon-aligned.

Return
Values

Dn Nonsynonymous substitution rate(s).

Ds Synonymous substitution rate(s).

Like Likelihood of estimate of substitution rates.

2-148

dndsml

Description [Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2) estimates the
synonymous and nonsynonymous substitution rates between the two
homologous sequences, SeqNT1 and SeqNT2, using the Yang-Nielsen
method (2000). This maximum likelihood method estimates an explicit
model for codon substitution that accounts for transition/transversion
rate bias and base/codon frequency bias. Then it uses the model to
correct synonymous and nonsynonymous counts to account for multiple
substitutions at the same site. The maximum likelihood method is best
suited when the sample size is significant (larger than 100 bases) and
when the sequences being compared can have transition/transversion
rate biases and base/codon frequency biases.

dndsml returns:

• Dn — Nonsynonymous substitution rate(s).

• Ds — Synonymous substitution rate(s).

• Like — Likelihood of this estimate.

This analysis:

• Assumes that the nucleotide sequences, SeqNT1 and SeqNT2, are
codon-aligned, that is, do not have frame shifts.

Tip If your sequences are not codon-aligned, use the nt2aa function
to convert them to amino acid sequences, use the nwalign function
to globally align them, then use the seqinsertgaps function to
recover the corresponding codon-aligned nucleotide sequences. See
Estimating Synonymous and Nonsynonymous Substitution Rates
Between Two Nucleotide Sequences That Are Not Codon-Aligned
on page 2-151

• Excludes any ambiguous nucleotide characters or codons that include
gaps.

2-149

dndsml

• Considers the number of codons in the shorter of the two nucleotide
sequences.

Caution

If SeqNT1 and SeqNT2 are too short or too divergent, saturation can be
reached, and dndsml returns NaNs and a warning message.

[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2, ...'PropertyName',
PropertyValue, ...) calls dnds with optional properties that use
property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property
value pairs are as follows:

[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2, ...'GeneticCode',
GeneticCodeValue, ...) calculates synonymous and nonsynonymous
substitution rates using the specified genetic code. Enter a Code
Number or a string with a Code Name from the table. If you use a
Code Name, you can truncate it to the first two characters. Default is
1 or Standard.

[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2, ...'Verbose',
VerboseValue, ...) controls the display of the codons considered in
the computations and their amino acid translations. Choices are true
or false (default).

Tip Specify true to use this display to manually verify the codon
alignment of the two input sequences, SeqNT1 and SeqNT2. The presence
of stop codons (*) in the amino acid translation can indicate that SeqNT1
and SeqNT2 are not codon-aligned.

2-150

dndsml

Examples Estimating Synonymous and Nonsynonymous Substitution
Rates Between the gag Genes of Two HIV Viruses

1 Retrieve two sequences from the GenBank database for the gag
genes of two HIV viruses

gag1 = getgenbank('L11768');
gag2 = getgenbank('L11770');

2 Estimate the synonymous and nonsynonymous substitution rates
between the two sequences.

[dn ds like] = dndsml(gag1, gag2)

dn =
0.0259

ds =
0.0624

like =
-2.1864e+003

Estimating Synonymous and Nonsynonymous Substitution
Rates Between Two Nucleotide Sequences That Are Not
Codon-Aligned

1 Retrieve two nucleotide sequences from the GenBank database for
the neuraminidase (NA) protein of two strains of the Influenza A
virus (H5N1).

hk01 = getgenbank('AF509094');
vt04 = getgenbank('DQ094287');

2 Extract the coding region from the two nucleotide sequences.

hk01_cds = featuresparse(hk01,'feature','CDS','Sequence',true);
vt04_cds = featuresparse(vt04,'feature','CDS','Sequence',true);

2-151

dndsml

3 Align the amino acids sequences converted from the nucleotide
sequences.

[sc,al]=nwalign(nt2aa(hk01_cds),nt2aa(vt04_cds),'extendgap',1);

4 Use the seqinsertgaps function to copy the gaps from the aligned
amino acid sequences to their corresponding nucleotide sequences,
thus codon-aligning them.

hk01_aligned = seqinsertgaps(hk01_cds,al(1,:))
vt04_aligned = seqinsertgaps(vt04_cds,al(3,:))

5 Estimate the synonymous and nonsynonymous substitutions rates of
the codon-aligned nucleotide sequences and also display the codons
considered in the computations and their amino acid translations.

[dn,ds] = dndsml(hk01_aligned,vt04_aligned,'verbose',true)

References [1] Tamura, K., and Mei, M. (1993). Estimation of the number of
nucleotide substitutions in the control region of mitochondrial DNA
in humans and chimpanzees. Molecular Biology and Evolution 10,
512–526.

[2] Yang, Z., and Nielsen, R. (2000). Estimating synonymous and
nonsynonymous substitution rates under realistic evolutionary models.
Molecular Biology and Evolution 17, 32–43.

See Also Bioinformatics Toolbox functions: dnds, featuresparse, geneticcode,
nt2aa, nwalign, seqinsertgaps, seqpdist

2-152

emblread

Purpose Read data from EMBL file

Syntax EMBLData = emblread('File')
EMBLSeq = emblread ('File', SequenceOnly',
SequenceOnlyValue)

Arguments File EMBL formatted file (ASCII text file). Enter
a file name, a path and file name, or a URL
pointing to a file. File can also be a MATLAB
character array that contains the text for a file
name.

SequenceOnlyValue Property to control reading EMBL file
information. If SequenceOnlyValue is true,
emblread returns only the sequence (EMBLSeq).

EMBLData MATLAB structure with fields corresponding to
EMBL data.

EMBLSeq MATLAB character string without metadata
for the sequence.

Description EMBLData = emblread('File') reads data from an EMBL formatted
file (File) and creates a MATLAB structure (EMBLData) with fields
corresponding to the EMBL two-character line type code. Each line type
code is stored as a separate element in the structure.

EMBLData contains the following fields:

Field

Identification.EntryName

Identification.Version

Identification.Topology

Identification.Molecule

Identification.DataClass

2-153

emblread

Field

Identification.Division

Identification.SequenceLength

Accession

SequenceVersion

DateCreated

DateUpdated

Description

Keyword

OrganismSpecies

OrganismClassification

Organelle

Reference{#}.Number

Reference{#}.Comment

Reference{#}.Position

Reference{#}.MedLine

Reference{#}.PubMed

Reference{#}.Authors

Reference{#}.Title

Reference{#}.Location

DatabaseCrossReference

Comments

Feature

Basecount.BP

Basecount.A

Basecount.C

2-154

emblread

Field

Basecount.G

Basecount.T

Basecount.Other

Sequence

Note Topology information was not included in EMBL flat files before
release 87 of the database. When reading a file created before release
87, EMBLREAD returns an empty Identification.Topology field.

Note The entry name is no longer displayed in the ID line of
EMBL flat files in release 87. When reading a file created in
release 87, EMBLREAD returns the accession number in the
Identification.EntryName field.

EMBLSeq = emblread ('File', SequenceOnly',
SequenceOnlyValue), when SequenceOnlyValue is true,
reads only the sequence information.

Examples Get sequence information from the Web, save to a file, and then read
back into MATLAB.

getembl('X00558','ToFile','rat_protein.txt');
EMBLData = emblread('rat_protein.txt')

See Also Bioinformatics Toolbox functions: fastaread, genbankread, getembl,
seqtool

2-155

evalrasmolscript

Purpose Send RasMol script commands to Molecule Viewer window

Syntax evalrasmolscript(FigureHandle, Command)
evalrasmolscript(FigureHandle, 'File', FileValue)

Arguments
FigureHandle Figure handle to a molecule viewer returned by the

molviewer function.

Command Either of the following:

• String specifying one or more RasMol script
commands. Use a ; to separate commands.

• Character array or cell array containing strings
specifying RasMol script commands.

Note For a complete list of RasMol script
commands, see

http://www.stolaf.edu/academics/chemapps/jmol/docs/

FileValue String specifying a file name or a path and file name
of a text file containing Jmol script commands. If
you specify only a file name, that file must be on the
MATLAB search path or in the MATLAB Current
Directory.

Description evalrasmolscript(FigureHandle, Command) sends the RasMol script
commands specified by Command to FigureHandle, the figure handle of a
Molecule Viewer window created using the molviewer function.

evalrasmolscript(FigureHandle, 'File', FileValue) sends the
RasMol script commands specified by FileValue to FigureHandle, the

2-156

http://www.stolaf.edu/academics/chemapps/jmol/docs/

evalrasmolscript

figure handle of a Molecule Viewer window created using the molviewer
function.

Examples 1 Use the molviewer function to create a figure handle to a Molecule
Viewer window.

FH = molviewer('2DHB')

2 Use the evalrasmolscript function to send script commands to the
molecule viewer that change the background to black and spin the
molecule.

evalrasmolscript(FH, 'background white; spin')

See Also Bioinformatics Toolbox functions: getpdb, molviewer, pdbread,
pdbwrite

2-157

exprprofrange

Purpose Calculate range of gene expression profiles

Syntax Range = exprprofrange(Data)
[Range, LogRange] = exprprofrange(Data)
exprprofrange(..., 'PropertyName', PropertyValue,...)
exprprofrange(..., 'ShowHist', ShowHistValue)

Arguments
Data Matrix where each row corresponds to a gene.

ShowHistValue Property to control displaying a histogram with
range data. Enter either true (include range
data) or false. The default value is false.

Description Range = exprprofrange(Data) calculates the range of each expression
profile in a data set (Data).

[Range, LogRange] = exprprofrange(Data) returns the log range,
that is, log(max(prof))- log(min(prof)), of each expression profile.
If you do not specify output arguments, exprprofrange displays a
histogram bar plot of the range.

exprprofrange(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

exprprofrange(..., 'ShowHist', ShowHistValue), when
ShowHistValue is true, displays a histogram of the range data.

Examples Calculate the range of expression profiles for yeast data as gene
expression changes during the metabolic shift from fermentation to
respiration.

load yeastdata
range = exprprofrange(yeastvalues,'ShowHist',true);

See Also Bioinformatics Toolbox function exprprofvar, generangefilter

2-158

exprprofvar

Purpose Calculate variance of gene expression profiles

Syntax Variance = exprprofvar(Data)
exprprofvar(..., 'PropertyName', PropertyValue,...)
exprprofvar(..., 'ShowHist', ShowHistValue)

Arguments
Data Matrix where each row corresponds to a gene.

ShowHistValue Property to control the display of a histogram with
variance data. Enter either true or false (default).

Description Variance = exprprofvar(Data) calculates the variance of each
expression profile in a data set (Data). If you do not specify output
arguments, this function displays a histogram bar plot of the range.

exprprofvar(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

exprprofvar(..., 'ShowHist', ShowHistValue), when ShowHist is
true, displays a histogram of the range data .

Examples Calculate the variance of expression profiles for yeast data as gene
expression changes during the metabolic shift from fermentation to
respiration.

load yeastdata
datavar = exprprofvar(yeastvalues,'ShowHist',true);

See Also Bioinformatics Toolbox functions exprprofrange, generangefilter,
genevarfilter

2-159

fastaread

Purpose Read data from FASTA file

Syntax FASTAData = fastaread(File)
[Header, Sequence] = fastaread(File)
fastaread(..., 'PropertyName', PropertyValue, ...)
fastaread(..., 'IgnoreGaps', IgnoreGapsValue, ...)
fastaread(..., 'Blockread', BlockreadValue, ...)

Arguments
File FASTA-formatted file (ASCII text file). Enter

a file name, a path and file name, or a URL
pointing to a file. File can also be a MATLAB
character array that contains the text for a file
name.

FASTAData MATLAB structure with the fields Header and
Sequence.

IgnoreGapsValue Property to control removing gap symbols.
Enter either true or false (default).

BlockreadValue Property to control reading a single entry or
block of entries from a file containing multiple
sequences. Enter a scalar N, to read the Nth
entry in the file. Enter a 1-by-2 vector [M1, M2],
to read the block of entries starting at entry M1
and ending at entry M2. To read all remaining
entries in the file starting at entry M1, enter a
positive value for M1 and enter Inf for M2.

Description fastaread reads data from a FASTA-formatted file into a MATLAB
structure with the following fields:

Field

Header

Sequence

2-160

fastaread

A file with a FASTA format begins with a right angle bracket (>) and a
single line description. Following this description is the sequence as a
series of lines with fewer than 80 characters. Sequences are expected to
use the standard IUB/IUPAC amino acid and nucleotide letter codes.

For a list of codes, see aminolookup and baselookup.

FASTAData = fastaread(File) reads a file with a FASTA format
and returns the data in a structure. FASTAData.Header is the header
information, while FASTAData.Sequence is the sequence stored as a
string of letters.

[Header, Sequence] = fastaread(File) reads data from a file
into separate variables. If the file contains more than one sequence,
then header and sequence are cell arrays of header and sequence
information.

fastaread(..., 'PropertyName', PropertyValue, ...)defines
optional properties. The property name/value pairs can be in any format
supported by the function set (for example, name-value string pairs,
structures, and name-value cell array pairs).

fastaread(..., 'IgnoreGaps', IgnoreGapsValue, ...), when
IgnoreGapsValue is true, removes any gap symbol ('-' or '.') from
the sequences. Default is false.

fastaread(..., 'Blockread', BlockreadValue, ...) lets you read
in a single entry or block of entries from a file containing multiple
sequences. If BlockreadValue is a scalar N, then fastaread reads the
Nth entry in the file. If BlockreadValue is a 1-by-2 vector [M1, M2], then
fastaread reads the block of entries starting at entry M1 and ending at
entry M2. To read all remaining entries in the file starting at entry M1,
enter a positive value for M1 and enter Inf for M2.

Examples Read the sequence for the human p53 tumor gene.

p53nt = fastaread('p53nt.txt')

Read the sequence for the human p53 tumor protein.

2-161

fastaread

p53aa = fastaread('p53aa.txt')

Read the human mitochondrion genome in FASTA format.

entrezSite = 'http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?'
textOptions = '&txt=on&view=fasta'
genbankID = '&list_uids=NC_001807'
mitochondrion = fastaread([entrezSite textOptions genbankID])

See Also Bioinformatics Toolbox functions: emblread, fastawrite, genbankread,
genpeptread, multialignread, seqprofile, seqtool

2-162

fastawrite

Purpose Write to file using FASTA format

Syntax fastawrite(File, Data)
fastawrite(File, Header, Sequence)

Arguments File String specifying either a file name or a path and file
name supported by your operating system. If you specify
only a file name, the file is saved to the MATLAB Current
Directory.

Data Any of the following:
• String with a FASTA format

• Sequence object

• MATLAB structure containing the fields Header and
Sequence

• GenBank/GenPept structure

Header String containing information about the sequence.
This text will be included in the header of the
FASTA-formatted file, File.

Sequence String or name of variable containing an amino acid or
nucleotide sequence using the standard IUB/IUPAC
letter or integer codes. For a list of valid characters, see
Amino Acid Lookup on page 2-56 or Nucleotide Lookup
Table on page 2-66.

Description fastawrite(File, Data) writes the contents of Data to a
FASTA-formatted file (ASCII text file).

fastawrite(File, Header, Sequence) writes the specified header
and sequence information to a FASTA-formatted file (ASCII text file).

Examples %get the sequence for the human p53 gene from GenBank.
seq = getgenbank('NM_000546')

2-163

fastawrite

%find the CDS line in the FEATURES information.
cdsline = strmatch('CDS',seq.Features)

%read the coordinates of the coding region.
[start,stop] = strread(seq.Features(cdsline,:),'%*s%d..%d')

%extract the coding region.
codingSeq = seq.Sequence(start:stop)

%write just the coding region to a FASTA file.
fastawrite('p53coding.txt','Coding region for p53',codingSeq);

Save multiple sequences.

data(1).Sequence = 'ACACAGGAAA'
data(1).Header = 'First sequence'
data(2).Sequence = 'ACGTCAGGTC'
data(2).Header = 'Second sequence'

fastawrite('my_sequences.txt', data)
type('my_sequences.txt')

>First sequence
ACACAGGAAA

>Second sequence
ACGTCAGGTC

See Also Bioinformatics Toolbox functions: fastaread, seqtool

2-164

featuresmap

Purpose Draw linear or circular map of features from GenBank structure

Syntax featuresmap(GBStructure)
featuresmap(GBStructure, FeatList)
featuresmap(GBStructure, FeatList, Levels)
featuresmap(GBStructure, Levels)
[Handles, OutFeatList] = featuresmap(...)
featuresmap(..., 'FontSize', FontSizeValue, ...)
featuresmap(..., 'ColorMap', ColorMapValue, ...)
featuresmap(..., 'Qualifiers', QualifiersValue, ...)
featuresmap(..., 'ShowPositions', ShowPositionsValue, ...)

Arguments
GBStructure GenBank structure, typically created using

the getgenbank or the genbankread function.

FeatList Cell array of features (from the list of all
features in the GenBank structure) to include
in or exclude from the map.

• If FeatList is a cell array of features,
these features are mapped. Any features
in FeatList not found in the GenBank
structure are ignored.

• If FeatList includes '-' as the first
string in the cell array, then the remaining
strings (features) are not mapped.

By default, FeatList is the a list of all
features in the GenBank structure.

2-165

featuresmap

Levels Vector of N integers, where N is the number of
features. Each integer represents the level in
the map for the corresponding feature. For
example, if Levels = [1, 1, 2, 3, 3], the
first two features would appear on level 1, the
third feature on level 2, and the fourth and
fifth features on level 3. By default, Levels =
[1:N].

FontSizeValue Scalar that sets the font size (points) for the
annotations of the features. Default is 9.

ColorMapValue Three-column matrix, to specify a list of
colors to use for each feature. This matrix
replaces the default matrix, which specifies
the following colors and order: blue, green,
red, cyan, magenta, yellow, brown, light
green, orange, purple, gold, and silver. In the
matrix, each row corresponds to a color, and
each column specifies red, green, and blue
intensity respectively. Valid values for the
RGB intensities are 0.0 to 1.0.

2-166

featuresmap

QualifiersValue Cell array of strings to specify an ordered list
of qualifiers to search for in the structure
and use as annotations. For each feature,
the first matching qualifier found from the
list is used for its annotation. If a feature
does not include any of the qualifiers, no
annotation displays for that feature. By
default, QualifiersValue = {'gene',
'product', 'locus_tag', 'note',
'db_xref', 'protein_id'}. Provide your
own QualifiersValue to limit or expand the
list of qualifiers or change the search order.

Tip Set QualifiersValue = {} to create a
map with no annotations.

Tip To determine all qualifiers available for
a given feature, do either of the following:

• Create the map, and then click a feature or
its annotation to list all qualifiers for that
feature.

• Use the featuresparse command to parse
all the features into a new structure, and
then use the fieldnames command to
list the qualifiers for a specific feature.
See Determining Qualifiers for a Specific
Feature on page 2-173.

ShowPositionsValue Property to add the sequence position to
the annotation label for each feature. Enter
true to add the sequence position. Default
is false.

2-167

featuresmap

Description featuresmap(GBStructure) creates a linear or circular map of all
features from a GenBank structure, typically created using the
getgenbank or the genbankread function.

featuresmap(GBStructure, FeatList) creates a linear or circular map
of a subset of features from a GenBank structure. FeatList lets you
specify features (from the list of all features in the GenBank structure)
to include in or exclude from the map.

• If FeatList is a cell array of features, these features are mapped.
Any features in FeatList not found in the GenBank structure are
ignored.

• If FeatList includes '-' as the first string in the cell array, then the
remaining strings (features) are not mapped.

By default, FeatList is a list of all features in the GenBank structure.

featuresmap(GBStructure, FeatList, Levels) or
featuresmap(GBStructure, Levels) indicates which level on the map
each feature is drawn. Level 1 is the left-most (linear map) or inner-most
(circular map) level, and level N is the right-most (linear map) or
outer-most (circular map) level, where N is the number of features.

Levels is a vector of N integers, where N is the number of features. Each
integer represents the level in the map for the corresponding feature.
For example, if Levels = [1, 1, 2, 3, 3], the first two features would
appear on level 1, the third feature on level 2, and the fourth and fifth
features on level 3. By default, Levels = [1:N].

[Handles, OutFeatList] = featuresmap(...) returns a list of
handles for each feature in OutFeatList. It also returns OutFeatList,
which is a cell array of the mapped features.

Tip Use Handles and OutFeatList with the legend command to create
a legend of features.

2-168

featuresmap

featuresmap(..., 'PropertyName', PropertyValue, ...) defines
optional properties that use property name/value pairs in any order.
These property name/value pairs are as follows:

featuresmap(..., 'FontSize', FontSizeValue, ...) sets the font size
(points) for the annotations of the features. Default FontSizeValue is 9.

featuresmap(..., 'ColorMap', ColorMapValue, ...) specifies a list of
colors to use for each feature. This matrix replaces the default matrix,
which specifies the following colors and order: blue, green, red, cyan,
magenta, yellow, brown, light green, orange, purple, gold, and silver.
ColorMapValue is a three-column matrix, where each row corresponds
to a color, and each column specifies red, green, and blue intensity
respectively. Valid values for the RGB intensities are 0.0 to 1.0.

featuresmap(..., 'Qualifiers', QualifiersValue, ...) lets you
specify an ordered list of qualifiers to search for and use as annotations.
For each feature, the first matching qualifier found from the list is used
for its annotation. If a feature does not include any of the qualifiers, no
annotation displays for that feature. QualifiersValue is a cell array
of strings. By default, QualifiersValue = {'gene', 'product',
'locus_tag', 'note', 'db_xref', 'protein_id'}. Provide your
own QualifiersValue to limit or expand the list of qualifiers or change
the search order.

Tip Set QualifiersValue = {} to create a map with no annotations.

2-169

featuresmap

Tip To determine all qualifiers available for a given feature, do either
of the following:

• Create the map, and then click a feature or its annotation to list all
qualifiers for that feature.

• Use the featuresparse command to parse all the features into a
new structure, and then use the fieldnames command to list the
qualifiers for a specific feature. See Determining Qualifiers for a
Specific Feature on page 2-173.

featuresmap(..., 'ShowPositions', ShowPositionsValue, ...)
lets you add the sequence position to the annotation label. If
ShowPositionsValue is true, sequence positions are added to the
annotation labels. Default is false.

2-170

featuresmap

2-171

featuresmap

2-172

featuresmap

After creating a map:

• Click a feature or annotation to display a list of all qualifiers for that
feature.

• Zoom the plot by clicking the following buttons:

or

Examples Creating a Circular Map with Legend

The following example creates a circular map of five different features
mapped on three levels. It also uses outputs from the featuresmap
function as inputs to the legend function to add a legend to the map.

GBStructure = getgenbank('J01415');
[Handles, OutFeatList] = featuresmap(GBStructure, ...

{'CDS','D_loop','mRNA','tRNA','rRNA'}, [1 2 2 2 3])
legend(Handles, OutFeatList, 'interpreter', 'none', ...

'location','bestoutside')
title('Human Mitochondrion, Complete Genome')

Creating a Linear Map with Sequence Position Labels and
Changed Font Size

The following example creates a linear map showing only the gene
feature. It changes the font of the labels to seven points and includes
the sequence position in the labels.

herpes = getgenbank('NC_001348');
featuresmap(herpes,{'gene'},'fontsize',7,'showpositions',true)
title('Genes in Human herpesvirus 3 (strain Dumas)')

Determining Qualifiers for a Specific Feature

The following example uses the getgenbank function to create a
GenBank structure, GBStructure. It then uses the featuresparse
function to parse the features in the GenBank structure into a new

2-173

featuresmap

structure, features. It then uses the fieldnames function to return
all qualifiers for one of the features, D_loop.

GenBankStructure = getgenbank('J01415');
features = featuresparse (GenBankStructure)
features =

source: [1x1 struct]
D_loop: [1x2 struct]

rep_origin: [1x3 struct]
repeat_unit: [1x4 struct]
misc_signal: [1x1 struct]

misc_RNA: [1x1 struct]
variation: [1x17 struct]

tRNA: [1x22 struct]
rRNA: [1x2 struct]
mRNA: [1x10 struct]
CDS: [1x13 struct]

conflict: [1x1 struct]

fieldnames(features.D_loop)

ans =

'Location'
'Indices'
'note'
'citation'

See Also featuresparse, genbankread, getgenbank, seqtool

2-174

featuresparse

Purpose Parse features from GenBank, GenPept, or EMBL data

Syntax FeatStruct = featuresparse(Features)
FeatStruct = featuresparse(Features, ...'Feature',
FeatureValue, ...)
FeatStruct = featuresparse(Features, ...'Sequence',

SequenceValue, ...)

Arguments Features Any of the following:
• String containing GenBank, GenPept, or EMBL

features

• MATLAB character array including text
describing GenBank, GenPept, or EMBL
features

• MATLAB structure with fields corresponding
to GenBank, GenPept, or EMBL data, such as
those returned by genbankread, genpeptread,
emblread, getgenbank, getgenpept, or getembl

FeatureValue Name of a feature contained in Features. When
specified, featuresparse returns only the
substructure that corresponds to this feature.
If there are multiple features with the same
FeatureValue, then FeatStruct is an array of
structures.

SequenceValue Property to control the extraction, when possible,
of the sequences respective to each feature, joining
and complementing pieces of the source sequence
and storing them in the Sequence field of the
returned structure, FeatStruct. When extracting
the sequence from an incomplete CDS feature,
featuresparse uses the codon_start qualifier to
adjust the frame of the sequence. Choices are true
or false (default).

2-175

featuresparse

Return
Values

FeatStruct Output structure containing a field for every
database feature. Each field name in FeatStruct
matches the corresponding feature name in the
GenBank, GenPept, or EMBL database, with the
exceptions listed in the table below. Fields in
FeatStruct contain substructures with feature
qualifiers as fields. In the GenBank, GenPept,
and EMBL databases, for each feature, the
only mandatory qualifier is its location, which
featuresparse translates to the field Location.
When possible, featuresparse also translates this
location to numeric indices, creating an Indices
field.

Note If you use the Indices field to extract
sequence information, you may need to complement
the sequences.

Description FeatStruct = featuresparse(Features) parses the features from
Features, which contains GenBank, GenPept, or EMBL features.
Features can be a:

• String containing GenBank, GenPept, or EMBL features

• MATLAB character array including text describing GenBank,
GenPept, or EMBL features

• MATLAB structure with fields corresponding to GenBank, GenPept,
or EMBL data, such as those returned by genbankread, genpeptread,
emblread, getgenbank, getgenpept, or getembl

FeatStruct is the output structure containing a field for every database
feature. Each field name in FeatStruct matches the corresponding

2-176

featuresparse

feature name in the GenBank, GenPept, or EMBL database, with the
following exceptions.

Feature Name in GenBank,
GenPept, or EMBL Database

Field Name in MATLAB Structure

-10_signal minus_10_signal

-35_signal minus_35_signal

3'UTR three_prime_UTR

3'clip three_prime_clip

5'UTR five_prime_UTR

5'clip five_prime_clip

D-loop D_loop

Fields in FeatStruct contain substructures with feature qualifiers as
fields. In the GenBank, GenPept, and EMBL databases, for each feature,
the only mandatory qualifier is its location, which featuresparse
translates to the field Location. When possible, featuresparse also
translates this location to numeric indices, creating an Indices field.

Note If you use the Indices field to extract sequence information, you
may need to complement the sequences.

FeatStruct = featuresparse (Features, ...'PropertyName',
PropertyValue, ...) calls featuresparse with optional properties
that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed
in single quotation marks and is case insensitive. These property
name/property value pairs are as follows:

FeatStruct = featuresparse(Features, ...'Feature', FeatureValue,
...) returns only the substructure that corresponds to FeatureValue,
the name of a feature contained in Features. If there are multiple

2-177

featuresparse

features with the same FeatureValue, then FeatStruct is an array of
structures.

FeatStruct = featuresparse(Features, ...'Sequence',
SequenceValue, ...) controls the extraction, when possible, of the
sequences respective to each feature, joining and complementing
pieces of the source sequence and storing them in the field Sequence.
When extracting the sequence from an incomplete CDS feature,
featuresparse uses the codon_start qualifier to adjust the frame of
the sequence. Choices are true or false (default).

Examples Obtaining All Features from a GenBank File

The following example obtains all the features stored in the GenBank
file nm175642.txt:

gbkStruct = genbankread('nm175642.txt');
features = featuresparse(gbkStruct)

features =

source: [1x1 struct]
gene: [1x1 struct]
CDS: [1x1 struct]

Obtaining a Subset of Features from a GenBank Record

The following example obtains only the coding sequences (CDS) feature
of the Caenorhabditis elegans cosmid record (accession number Z92777)
from the GenBank database:

worm = getgenbank('Z92777');
CDS = featuresparse(worm,'feature','cds')

CDS =

1x12 struct array with fields:
Location
Indices

2-178

featuresparse

locus_tag
standard_name
note
codon_start
product
protein_id
db_xref
translation

Extracting Sequences for Each Feature

1 Retrieve two nucleotide sequences from the GenBank database for
the neuraminidase (NA) protein of two strains of the Influenza A
virus (H5N1).

hk01 = getgenbank('AF509094');
vt04 = getgenbank('DQ094287');

2 Extract the sequence of the coding region for the neuraminidase
(NA) protein from the two nucleotide sequences. The sequences of
the coding regions are stored in the Sequence fields of the returned
structures, hk01_cds and vt04_cds.

hk01_cds = featuresparse(hk01,'feature','CDS','Sequence',true);
vt04_cds = featuresparse(vt04,'feature','CDS','Sequence',true);

3 Once you have extracted the nucleotide sequences, you can use the
nt2aa and nwalign functions to align the amino acids sequences
converted from the nucleotide sequences.

[sc,al]=nwalign(nt2aa(hk01_cds),nt2aa(vt04_cds),'extendgap',1);

4 Then you can use the seqinsertgaps function to copy the gaps from
the aligned amino acid sequences to their corresponding nucleotide
sequences, thus codon-aligning them.

hk01_aligned = seqinsertgaps(hk01_cds,al(1,:))
vt04_aligned = seqinsertgaps(vt04_cds,al(3,:))

2-179

featuresparse

5 Once you have code aligned the two sequences, you can use
them as input to other functions such as dnds, which calculates
the synonymous and nonsynonymous substitutions rates of the
codon-aligned nucleotide sequences. By setting Verbose to true, you
can also display the codons considered in the computations and their
amino acid translations.

[dn,ds] = dnds(hk01_aligned,vt04_aligned,'verbose',true)

See Also Bioinformatics Toolbox functions: emblread, genbankread,
genpeptread, getgenbank, getgenpept

2-180

galread

Purpose Read microarray data from GenePix array list file

Syntax GALData = galread('File')

Arguments
File GenePix Array List formatted file (GAL). Enter a

file name, or enter a path and file name.

Description galread reads data from a GenePix formatted file into a MATLAB
structure.

GALData = galread('File') reads in a GenePix Array List formatted
file (File) and creates a structure (GALData) containing the following
fields:

Field

Header

BlockData

IDs

Names

The field BlockData is an N-by-3 array. The columns of this array are
the block data, the column data, and the row data respectively. For
more information on the GAL format, see

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gal

For a list of supported file format versions, see

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html

GenePix is a registered trademark of Molecular Devices Corporation.

See Also Bioinformatics Toolbox functions: affyread, geosoftread, gprread,
imageneread, sptread

2-181

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gal
http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html

gcrma

Purpose Perform GC Robust Multi-array Average (GCRMA) background
adjustment, quantile normalization, and median-polish summarization
on Affymetrix microarray probe-level data

Syntax ExpressionMatrix = gcrma(PMMatrix, MMMatrix, ProbeIndices,
AffinPM, AffinMM)

ExpressionMatrix = gcrma(PMMatrix, MMMatrix, ProbeIndices,
SequenceMatrix)

ExpressionMatrix = gcrma(...'ChipIndex',
ChipIndexValue, ...)
ExpressionMatrix = gcrma(...'OpticalCorr',
OpticalCorrValue,

...)
ExpressionMatrix = gcrma(...'CorrConst', CorrConstValue,

...)
ExpressionMatrix = gcrma(...'Method', MethodValue, ...)
ExpressionMatrix = gcrma(...'TuningParam',
TuningParamValue,

...)
ExpressionMatrix = gcrma(...'GSBCorr', GSBCorrValue, ...)
ExpressionMatrix = gcrma(...'Normalize', NormalizeValue,

...)
ExpressionMatrix = gcrma(...'Verbose', VerboseValue, ...)

2-182

gcrma

Arguments
PMMatrix Matrix of intensity values where each row

corresponds to a perfect match (PM) probe and
each column corresponds to an Affymetrix CEL
file. (Each CEL file is generated from a separate
chip. All chips should be of the same type.)

Tip You can use the PMIntensities matrix
returned by the celintensityread function.

MMMatrix Matrix of intensity values where each row
corresponds to a mismatch (MM) probe and each
column corresponds to an Affymetrix CEL file.
(Each CEL file is generated from a separate
chip. All chips should be of the same type.)

Tip You can use the MMIntensities matrix
returned by the celintensityread function.

ProbeIndices Column vector containing probe indices. Probes
within a probe set are numbered 0 through N -
1, where N is the number of probes in the probe
set.

Tip You can use the affyprobeseqread
function to generate this column vector.

2-183

gcrma

AffinPM Column vector of PM probe affinities.

Tip You can use the affyprobeaffinities
function to generate this column vector.

AffinMM Column vector of MM probe affinities.

Tip You can use the affyprobeaffinities
function to generate this column vector.

2-184

gcrma

SequenceMatrix An N-by-25 matrix of sequence information for
the perfect match (PM) probes on the Affymetrix
GeneChip array, where N is the number of
probes on the array. Each row corresponds to
a probe, and each column corresponds to one
of the 25 sequence positions. Nucleotides in
the sequences are represented by one of the
following integers:

• 0 — None

• 1 — A

• 2 — C

• 3 — G

• 4 — T

Tip You can use the affyprobeseqread
function to generate this matrix. If you
have this sequence information in letter
representation, you can convert it to integer
representation using the nt2int function.

ChipIndexValue Positive integer specifying a column index
in MMMatrix, which specifies a chip. This
chip intensity data is used to compute probe
affinities, assuming no affinity data is provided.
Default is 1.

OpticalCorrValue Controls the use of optical background
correction on the PM and MM intensity values
in PMMatrix and MMMatrix. Choices are true
(default) or false.

2-185

gcrma

CorrConstValue Value that specifies the correlation constant,
rho, for background intensity for each PM/MM
probe pair. Choices are any value ≥ 0 and ≤ 1.
Default is 0.7.

MethodValue String that specifies the method to estimate
the signal. Choices are MLE, a faster, ad hoc
Maximum Likelihood Estimate method, or EB,
a slower, more formal, empirical Bayes method.
Default is MLE.

TuningParamValue Value that specifies the tuning parameter used
by the estimate method. This tuning parameter
sets the lower bound of signal values with
positive probability. Choices are a positive
value. Default is 5 (MLE) or 0.5 (EB).

Tip For information on determining a setting
for this parameter, see Wu et al., 2004.

GSBCorrValue Controls whether gene specific binding (GSB)
correction is performed on the non-specific
binding (NSB) data. Choices are true (default)
or false.

NormalizeValue Controls whether quantile normalization
is performed on background adjusted data.
Choices are true (default) or false.

VerboseValue Controls the display of a progress report
showing the number of each chip as it is
completed. Choices are true (default) or false.

2-186

gcrma

Return
Values ExpressionMatrix Matrix of log2 expression values where each

row corresponds to a gene (probe set) and each
column corresponds to an Affymetrix CEL file,
which represents a single chip.

Description ExpressionMatrix = gcrma(PMMatrix, MMMatrix, ProbeIndices,
AffinPM, AffinMM) performs GCRMA background adjustment,
quantile normalization , and median-polish summarization on
Affymetrix microarray probe-level data using probe affinity data.
ExpressionMatrix is a matrix of log2 expression values where each row
corresponds to a gene (probe set) and each column corresponds to an
Affymetrix CEL file, which represents a single chip.

Note There is no column in ExpressionMatrix that contains probe set
or gene information.

ExpressionMatrix = gcrma(PMMatrix, MMMatrix, ProbeIndices,
SequenceMatrix) performs GCRMA background adjustment, quantile
normalization, and Robust Multi-array Average (RMA) summarization
on Affymetrix microarray probe-level data using probe sequence data
to compute probe affinity data. ExpressionMatrix is a matrix of log2
expression values where each row corresponds to a gene (probe set) and
each column corresponds to an Affymetrix CEL file, which represents a
single chip.

Note If AffinPM and AffinMM affinity data and SequenceMatrix
sequence data are not available, you can still use the gcrma function by
entering an empty matrix for these inputs in the syntax.

ExpressionMatrix = gcrma(...'PropertyName', PropertyValue,
...) calls gcrma with optional properties that use property

2-187

gcrma

name/property value pairs. You can specify one or more properties in
any order. Each PropertyName must be enclosed in single quotes and
is case insensitive. These property name/property value pairs are as
follows:

ExpressionMatrix = gcrma(...'ChipIndex', ChipIndexValue,
...) computes probe affinities from MM probe intensity data from the
chip with the specified column index in MMMatrix, assuming no affinity
data is provided. Default ChipIndexValue is 1. If AffinPM and AffinMM
affinity data are provided, this property is ignored.

ExpressionMatrix = gcrma(...'OpticalCorr',
OpticalCorrValue, ...) controls the use of optical background
correction on the PM and MM intensity values in PMMatrix and
MMMatrix. Choices are true (default) or false.

ExpressionMatrix = gcrma(...'CorrConst', CorrConstValue,
...) specifies the correlation constant, rho, for background intensity
for each PM/MM probe pair. Choices are any value ≥ 0 and ≤ 1. Default
is 0.7.

ExpressionMatrix = gcrma(...'Method', MethodValue, ...)
specifies the method to estimate the signal. Choices are MLE, a faster,
ad hoc Maximum Likelihood Estimate method, or EB, a slower, more
formal, empirical Bayes method. Default is MLE.

ExpressionMatrix = gcrma(...'TuningParam',
TuningParamValue, ...) specifies the tuning parameter
used by the estimate method. This tuning parameter sets the lower
bound of signal values with positive probability. Choices are a positive
value. Default is 5 (MLE) or 0.5 (EB).

Tip For information on determining a setting for this parameter, see
Wu et al., 2004.

ExpressionMatrix = gcrma(...'GSBCorr', GSBCorrValue, ...)
controls whether gene specific binding (GSB) correction is performed

2-188

gcrma

on the non-specific binding (NSB) data. Choices are true (default) or
false.

ExpressionMatrix = gcrma(...'Normalize', NormalizeValue,
...) controls whether quantile normalization is performed on
background adjusted data. Choices are true (default) or false.

ExpressionMatrix = gcrma(...'Verbose', VerboseValue, ...)
controls the display of a progress report showing the number of each
chip as it is completed. Choices are true (default) or false.

Examples 1 Load the MAT file, included with Bioinformatics Toolbox, that
contains Affymetrix data from a prostate cancer study. The variables
in the MAT file include seqMatrix, a matrix containing sequence
information for PM probes, pmMatrix and mmMatrix, matrices
containing PM and MM probe intensity values, and probeIndices, a
column vector containing probe indexing information.

load prostatecancerrawdata

2 Compute the Affymetrix PM and MM probe affinities from their
sequences and MM probe intensities.

[apm, amm] = affyprobeaffinities(seqMatrix, mmMatrix(:,1),...
'ProbeIndices', probeIndices);

3 Perform GCRMA background adjustment, quantile normalization,
and Robust Multi-array Average (RMA) summarization on the
Affymetrix microarray probe-level data and create a matrix of
expression values.

expdata = gcrma(pmMatrix, mmMatrix, probeIndices, seqMatrix);

The prostatecancerrawdata.mat file used in this example contains
data from Best et al., 2005.

References [1] Wu, Z., Irizarry, R.A., Gentleman, R., Murillo, F.M. and Spencer, F.
(2004). A Model Based Background Adjustment for Oligonucleotide

2-189

gcrma

Expression Arrays. Journal of the American Statistical Association
99(468), 909–917.

[2] Wu, Z., and Irizarry, R.A. (2005). Stochastic Models Inspired by
Hybridization Theory for Short Oligonucleotide Arrays. Proceedings of
RECOMB 2004. J Comput Biol. 12(6), 882–93.

[3] Wu, Z., and Irizarry, R.A. (2005). A Statistical Framework for the
Analysis of Microarray Probe-Level Data. Johns Hopkins University,
Biostatistics Working Papers 73.

[4] Speed, T. (2006). Background models and GCRMA. Lecture
10, Statistics 246, University of California Berkeley.
http://www.stat.berkeley.edu/users/terry/Classes/s246.2006/Week10/Week10L
.

[5] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R.,
Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea,
M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik,
R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F.
(2005). Molecular alterations in primary prostate cancer after androgen
ablation therapy. Clinical Cancer Research 11, 6823–6834.

See Also Bioinformatics Toolbox functions: affyprobeseqread, affyread,
celintensityread, gcrmabackadj, quantilenorm, rmabackadj,
rmasummary

2-190

http://www.stat.berkeley.edu/users/terry/Classes/s246.2006/Week10/Week10L1.pdf

gcrmabackadj

Purpose Perform GC Robust Multi-array Average (GCRMA) background
adjustment on Affymetrix microarray probe-level data using sequence
information

Syntax PMMatrix_Adj = gcrmabackadj(PMMatrix, MMMatrix, AffinPM,
AffinMM)

[PMMatrix_Adj, nsbStruct] = gcrmabackadj(PMMatrix,
MMMatrix,

AffinPM, AffinMM)
... = gcrmabackadj(...'OpticalCorr',
OpticalCorrValue, ...)
... = gcrmabackadj(...'CorrConst', CorrConstValue, ...)
... = gcrmabackadj(...'Method', MethodValue, ...)
... = gcrmabackadj(...'TuningParam',
TuningParamValue, ...)
... = gcrmabackadj(...'AddVariance',
AddVarianceValue, ...)
... = gcrmabackadj(...'Showplot', ShowplotValue, ...)
... = gcrmabackadj(...'Verbose', VerboseValue, ...)

2-191

gcrmabackadj

Arguments
PMMatrix Matrix of intensity values where each row

corresponds to a perfect match (PM) probe and
each column corresponds to an Affymetrix CEL
file. (Each CEL file is generated from a separate
chip. All chips should be of the same type.)

Tip You can use the PMIntensities matrix
returned by the celintensityread function.

MMMatrix Matrix of intensity values where each row
corresponds to a mismatch (MM) probe and each
column corresponds to an Affymetrix CEL file.
(Each CEL file is generated from a separate
chip. All chips should be of the same type.)

Tip You can use the MMIntensities matrix
returned by the celintensityread function.

AffinPM Column vector of PM probe affinities, such as
returned by the affyprobeaffinities function.
Each row corresponds to a probe.

AffinMM Column vector of MM probe affinities, such as
returned by the affyprobeaffinities function.
Each row corresponds to a probe.

OpticalCorrValue Controls the use of optical background correction
on the PM and MM probe intensity values in
PMMatrix and MMMatrix. Choices are true
(default) or false.

2-192

gcrmabackadj

CorrConstValue Value that specifies the correlation constant,
rho, for log background intensity for each
PM/MM probe pair. Choices are any value ≥ 0
and ≤ 1. Default is 0.7.

MethodValue String that specifies the method to estimate
the signal. Choices are MLE, a faster, ad hoc
Maximum Likelihood Estimate method, or EB,
a slower, more formal, empirical Bayes method.
Default is MLE.

TuningParamValue Value that specifies the tuning parameter used
by the estimate method. This tuning parameter
sets the lower bound of signal values with
positive probability. Choices are a positive
value. Default is 5 (MLE) or 0.5 (EB).

Tip For information on determining a setting
for this parameter, see Wu et al., 2004.

AddVarianceValue Controls whether the signal variance is added
to the weight function for smoothing low signal
edge. Choices are true or false (default).

2-193

gcrmabackadj

ShowplotValue Controls the display of a plot showing the log2 of
probe intensity values from a specified column
(chip) in MMMatrix, versus probe affinities in
AffinMM. Choices are true, false, or I, an
integer specifying a column in MMMatrix. If set
to true, the first column in MMMatrix is plotted.
Default is:

• false — When return values are specified.

• true — When return values are not specified.

VerboseValue Controls the display of a progress report
showing the number of each chip as it is
completed. Choices are true (default) or false.

Return
Values PMMatrix_Adj Matrix of background adjusted PM (perfect

match) intensity values.

nsbStruct Structure containing nonspecific binding
background parameters, estimated from the
intensities and affinities of probes on an
Affymetrix GeneChip array. nsbStruct includes
the following fields:

• sigma

• mu_pm

• mu_mm

Description PMMatrix_Adj = gcrmabackadj(PMMatrix, MMMatrix, AffinPM,
AffinMM) performs GCRMA background adjustment (including optical
background correction and nonspecific binding correction) on Affymetrix
microarray probe-level data, using probe sequence information and
returns PMMatrix_Adj, a matrix of background adjusted PM (perfect
match) intensity values.

2-194

gcrmabackadj

Note If AffinPM and AffinMM data are not available, you can still use
the gcrmabackadj function by entering empty column vectors for both
of these inputs in the syntax.

[PMMatrix_Adj, nsbStruct] = gcrmabackadj(PMMatrix,
MMMatrix, AffinPM, AffinMM) returns nsbStruct, a structure
containing nonspecific binding background parameters, estimated from
the intensities and affinities of probes on an Affymetrix GeneChip
array. nsbStruct includes the following fields:

• sigma

• mu_pm

• mu_mm

... = gcrmabackadj(...'PropertyName', PropertyValue,

...) calls gcrmabackadj with optional properties that use property
name/property value pairs. You can specify one or more properties in
any order. Each PropertyName must be enclosed in single quotation
marks and is case insensitive. These property name/property value
pairs are as follows:

... = gcrmabackadj(...'OpticalCorr', OpticalCorrValue,

...) controls the use of optical background correction on the PM and
MM probe intensity values in PMMatrix and MMMatrix. Choices are
true (default) or false.

... = gcrmabackadj(...'CorrConst', CorrConstValue, ...)
specifies the correlation constant, rho, for log background intensity for
each PM/MM probe pair. Choices are any value ≥ 0 and ≤ 1. Default
is 0.7.

... = gcrmabackadj(...'Method', MethodValue, ...) specifies
the method to estimate the signal. Choices are MLE, a faster, ad hoc
Maximum Likelihood Estimate method, or EB, a slower, more formal,
empirical Bayes method. Default is MLE.

2-195

gcrmabackadj

... = gcrmabackadj(...'TuningParam', TuningParamValue,

...) specifies the tuning parameter used by the estimate method. This
tuning parameter sets the lower bound of signal values with positive
probability. Choices are a positive value. Default is 5 (MLE) or 0.5 (EB).

Tip For information on determining a setting for this parameter, see
Wu et al., 2004.

... = gcrmabackadj(...'AddVariance', AddVarianceValue,

...) controls whether the signal variance is added to the weight
function for smoothing low signal edge. Choices are true or false
(default).

... = gcrmabackadj(...'Showplot', ShowplotValue, ...)
controls the display of a plot showing the log2 of probe intensity values
from a specified column (chip) in MMMatrix, versus probe affinities in
AffinMM. Choices are true, false, or I, an integer specifying a column
in MMMatrix. If set to true, the first column in MMMatrix is plotted.
Default is:

• false — When return values are specified.

• true — When return values are not specified.

... = gcrmabackadj(...'Verbose', VerboseValue, ...)
controls the display of a progress report showing the number of each
chip as it is completed. Choices are true (default) or false.

Examples 1 Load the MAT file, included with Bioinformatics Toolbox, that
contains Affymetrix data from a prostate cancer study. The variables
in the MAT file include seqMatrix, a matrix containing sequence
information for PM probes, pmMatrix and mmMatrix, matrices
containing PM and MM probe intensity values, and probeIndices, a
column vector containing probe indexing information.

load prostatecancerrawdata

2-196

gcrmabackadj

2 Compute the Affymetrix PM and MM probe affinities from their
sequences and MM probe intensities.

[apm, amm] = affyprobeaffinities(seqMatrix, mmMatrix(:,1),...
'ProbeIndices', probeIndices);

3 Perform GCRMA background adjustment on the Affymetrix
microarray probe-level data, creating a matrix of background
adjusted PM intensity values. Also, display a plot showing the log2
of probe intensity values from column 3 (chip 3) in mmMatrix, versus
probe affinities in amm.

pms_adj = gcrmabackadj(pmMatrix, mmMatrix, apm, amm, 'showplot', 3);

2-197

gcrmabackadj

4 Perform GCRMA background adjustment again, using the slower,
more formal, empirical Bayes method.

pms_adj2 = gcrmabackadj(pmMatrix, mmMatrix, apm, amm, 'method', 'EB');

The prostatecancerrawdata.mat file used in this example contains
data from Best et al., 2005.

References [1] Wu, Z., Irizarry, R.A., Gentleman, R., Murillo, F.M., and Spencer,
F. (2004). A Model Based Background Adjustment for Oligonucleotide

2-198

gcrmabackadj

Expression Arrays. Journal of the American Statistical Association
99(468), 909–917.

[2] Wu, Z., and Irizarry, R.A. (2005). Stochastic Models Inspired by
Hybridization Theory for Short Oligonucleotide Arrays. Proceedings of
RECOMB 2004. J Comput Biol. 12(6), 882–93.

[3] Wu, Z., and Irizarry, R.A. (2005). A Statistical Framework for the
Analysis of Microarray Probe-Level Data. Johns Hopkins University,
Biostatistics Working Papers 73.

[4] Wu, Z., and Irizarry, R.A. (2003). A Model Based
Background Adjustment for Oligonucleotide Expression
Arrays. RSS Workshop on Gene Expression, Wye, England,
http://biosun01.biostat.jhsph.edu/%7Eririzarr/Talks/gctalk.pdf.

[5] Abd Rabbo, N.A., and Barakat, H.M. (1979). Estimation Problems
in Bivariate Lognormal Distribution. Indian J. Pure Appl. Math 10(7),
815–825.

[6] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R.,
Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea,
M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik,
R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F.
(2005). Molecular alterations in primary prostate cancer after androgen
ablation therapy. Clinical Cancer Research 11, 6823–6834.

See Also Bioinformatics Toolbox functions: affyprobeseqread, affyread,
celintensityread, probelibraryinfo

2-199

http://biosun01.biostat.jhsph.edu/%7Eririzarr/Talks/gctalk.pdf

genbankread

Purpose Read data from GenBank file

Syntax GenBankData = genbankread(File)

Arguments
File Either of the following:

• String specifying a file name, a path and file name,
or a URL pointing to a file. The referenced file is
a GenBank-formatted file (ASCII text file). If you
specify only a file name, that file must be on the
MATLAB search path or in the MATLAB Current
Directory.

• MATLAB character array that contains the text of
a GenBank-formatted file.

GenBankData MATLAB structure with fields corresponding to
GenBank keywords.

Description GenBankData = genbankread(File) reads in a GenBank-formatted
file, File, and creates a structure, GenBankData, containing fields
corresponding to the GenBank keywords. Each separate sequence listed
in the output structure GenBankData is stored as a separate element
of the structure.

Examples 1 Get sequence information for a gene (HEXA), store data in a file, and
then read back into MATLAB.

getgenbank('nm_000520', 'ToFile', 'TaySachs_Gene.txt')
s = genbankread('TaySachs_Gene.txt')

s =

LocusName: 'NM_000520'
LocusSequenceLength: '2255'

LocusNumberofStrands: ''

2-200

genbankread

LocusTopology: 'linear'
LocusMoleculeType: 'mRNA'

LocusGenBankDivision: 'PRI'
LocusModificationDate: '13-AUG-2006'

Definition: [1x63 char]
Accession: 'NM_000520'

Version: 'NM_000520.2'
GI: '13128865'

Project: []
Keywords: []
Segment: []
Source: 'Homo sapiens (human)'

SourceOrganism: [4x65 char]
Reference: {1x58 cell}

Comment: [15x67 char]
Features: [74x74 char]

CDS: [1x1 struct]
Sequence: [1x2255 char]

2 Display the source organism for this sequence.

s.SourceOrganism

ans =

Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;

Catarrhini; Hominidae; Homo.

See Also Bioinformatics Toolbox functions: emblread, fastaread, genpeptread,
getgenbank, scfread, seqtool

2-201

geneentropyfilter

Purpose Remove genes with low entropy expression values

Syntax Mask = geneentropyfilter(Data)
[Masks, FData] = geneentropyfilter(Data)
[Mask, FData, FNames] = geneentropyfilter(Data,Names)
geneentropyfilter(..., 'PropertyName', PropertyValue,...)
geneentropyfilter(..., 'Percentile', PercentileValue)

Arguments
Data Matrix where each row corresponds to the

experimental results for one gene. Each column
is the results for all genes from one experiment.

Names Cell array with the name of a gene for each row
of experimental data. Names has same number
of rows as Data with each row containing the
name or ID of the gene in the data set.

PercentileValue Property to specify a percentile below which gene
data is removed. Enter a value from 0 to 100.

Description Mask = geneentropyfilter(Data) identifies gene expression profiles
in Data with entropy values less than the 10th percentile.

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with a variance greater than
the threshold have a value of 1, and those with a variance less then
the threshold are 0.

[Masks, FData] = geneentropyfilter(Data) returns a filtered
data matrix (FData). FData can also be created using FData =
Data(find(I),:).

[Mask, FData, FNames] = geneentropyfilter(Data,Names) returns
a filtered names array (FNames). You can also create FNames using
FNames = Names(I).

geneentropyfilter(..., 'PropertyName', PropertyValue,...)
defines optional properties using property name/value pairs.

2-202

geneentropyfilter

geneentropyfilter(..., 'Percentile', PercentileValue)
removes from the experimental data (Data) gene expression profiles
with entropy values less than a given percentile (PercentileValue).

Examples load yeastdata
[fyeastvalues, fgenes] = geneentropyfilter(yeastvalues,genes);

References [1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an
Integrative Genomics, Cambridge, MA:MIT Press.

See Also Bioinformatics Toolbox functions: exprprofrange, exprprofvar,
genelowvalfilter, generangefilter, genevarfilter

2-203

genelowvalfilter

Purpose Remove gene profiles with low absolute values

Syntax Mask = genelowvalfilter(Data)
[Mask, FData] = genelowvalfilter(Data)
[Mask, FData, FNames] = genelowvalfilter(Data, Names)
genelowvalfilter(..., 'PropertyName', PropertyValue,...)
genelowvalfilter(..., 'Prctile', PrctileValue)
genelowvalfilter(..., 'AbsValue', AbsValueValue)
genelowvalfilter(..., 'AnyVal', AnyValValue)

Arguments
Data Matrix where each row corresponds to the

experimental results for one gene. Each column
is the results for all genes from one experiment.

Names Cell array with the same number of rows as
Data. Each row contains the name or ID of the
gene in the data set.

PrctileValue Property to specify a percentile below which
gene expression profiles are removed. Enter a
value from 0 to 100.

AbsValueValue Property to specify an absolute value below
which gene expression profiles are removed.

AnyValValue Property to select the minimum or maximum
absolute value for comparison with
AbsValueValue. If AnyValValue is true, selects
the minimum absolute value. If AnyValValue
is false, selects the maximum absolute value.
The default value is false.

Description Gene expression profile experiments have data where the absolute
values are very low. The quality of this type of data is often bad due to
large quantization errors or simply poor spot hybridization.

Mask = genelowvalfilter(Data) identifies gene expression profiles in
Data with all absolute values less than the 10th percentile.

2-204

genelowvalfilter

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with absolute expression levels
greater than the threshold have a value of 1, and those with absolute
expression levels less then the threshold are 0.

[Mask, FData] = genelowvalfilter(Data) returns a filtered data
matrix (FData). You can create FData using FData = Data(find(I),:).

[Mask, FData, FNames] = genelowvalfilter(Data, Names)
returns a filtered names array (FNames), where Names is a cell array of
the names of the genes corresponding to each row of Data. You can also
create FNames using FNames = Names(I).

genelowvalfilter(..., 'PropertyName', PropertyValue,...)
defines optional properties using property name/value pairs.

genelowvalfilter(..., 'Prctile', PrctileValue) removes from
the experimental data (Data) gene expression profiles with all absolute
values less than a specified percentile (Percentile).

genelowvalfilter(..., 'AbsValue', AbsValueValue) calculates the
maximum absolute value for each gene expression profile and removes
the profiles with maximum absolute values less than AbsValValue.

genelowvalfilter(..., 'AnyVal', AnyValValue), when
AnyValValue is true, calculates the minimum absolute value for
each gene expression profile and removes the profiles with minimum
absolute values less than AnyValValue.

Examples [data, labels, I, FI] = genelowvalfilter(data,labels,'AbsValue',5);

References [1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an
Integrative Genomics, Cambridge, MA:MIT Press.

See Also Bioinformatics Toolbox functions: exprprofrange, exprprofvar,
geneentropyfilter, generangefilter, genevarfilter

2-205

geneont

Purpose Create geneont object

Syntax GeneontObj = geneont
GeneontObj = geneont('File', FileValue)
GeneontObj = geneont('Live', LiveValue)
GeneontObj = geneont('Live', LiveValue,
'ToFile', ToFileValue)

Arguments
FileValue file name of an OBO-formatted file that is on the

MATLAB search path.

LiveValue Property to create the most up-to-date geneont object.
Enter true to create a geneont object (GeneontObj)
from the most recent version of the Gene Ontology
database. Default is false.

ToFileValue file name to which to save the geneont object from the
Gene Ontology database.

Description GeneontObj = geneont searches for the file gene_ontology.obo in the
MATLAB Current Directory and creates a geneont object.

GeneontObj = geneont('File', FileValue) creates a geneont object
(GeneontObj) from an OBO-formatted file that is on the MATLAB
search path.

GeneontObj = geneont('Live', LiveValue), when LiveValue is
true, creates a geneont object (GeneontObj) from the most recent
version of the Gene Ontology database, which is the file at

http://www.geneontology.org/ontology/gene_ontology.obo

Note The full Gene Ontology database may take several minutes to
download when you run this function using the Live property.

2-206

http://www.geneontology.org/ontology/gene_ontology.obo

geneont

GeneontObj = geneont('Live', LiveValue,
'ToFile', ToFileValue), when LiveValue is true, creates a geneont
object (GeneontObj) from the file at

http://www.geneontology.org/ontology/gene_ontology.obo

and saves the file to a local file (’ToFileValue’).

Examples 1 Download the Gene Ontology database from the Web into MATLAB.

GO = geneont('LIVE', true);

MATLAB creates a geneont object and displays the number of terms
in the database.

Gene Ontology object with 20005 Terms.

2 Display information about the geneont object.

get(GO)

default_namespace: 'gene_ontology'
format_version: '1.0'

date: '01:11:2005 16:51'
Terms: [20005x1 geneont.term]

3 Search for all GO terms in the geneont object that contain the string
ribosome in the property field name and create a structure of those
terms.

comparison = regexpi(get(GO.Terms,'name'),'ribosome');
indices = find(~cellfun('isempty',comparison));
terms_with_ribosmome = GO.Term(indices)
23x1 struct array with fields:

id
name
ontology
definition
synonym

2-207

http://www.geneontology.org/ontology/gene_ontology.obo

geneont

is_a
part_of
obsolete

See Also Bioinformatics Toolbox functions: goannotread, num2goid

Bioinformatics Toolbox object: geneont object

Bioinformatics Toolbox methods of geneont object: getancestors,
getdescendants, getmatrix, getrelatives

2-208

generangefilter

Purpose Remove gene profiles with small profile ranges

Syntax Mask = generangefilter(Data)
[Mask, FData] = generangefilter(Data)
[Mask, FData, FNames] = generangefilter(Data,Names)
generangefilter(..., 'PropertyName', PropertyValue,...)
generangefilter(..., 'Percentile', PercentileValue)
generangefilter(..., 'AbsValue', AbsValueValue)
generangefilter(..., 'LOGPercentile', LOGPercentileValue)
generangefilter(..., 'LOGValue', LOGValueValue)

Arguments
Data Matrix where each row corresponds to the

experimental results for one gene. Each
column is the results for all genes from one
experiment.

Names Cell array with the name of a gene for each
row of experimental data. Names has same
number of rows as Data with each row
containing the name or ID of the gene in the
data set.

PercentileValue Property to specify a percentile below which
gene expression profiles are removed. Enter
a value from 0 to 100.

AbsValueValue Property to specify an absolute value below
which gene expression profiles are removed.

LOGPercentileValue Property to specify the LOG of a percentile.

LOGValueValue Property to specify the LOG of an absolute
value.

Description Mask = generangefilter(Data) calculates the range for each gene
expression profile in the experimental data (Data), and then identifies
the expression profiles with ranges less than the 10th percentile.

2-209

generangefilter

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with a range greater then
the threshold have a value of 1, and those with a range less then the
threshold are 0.

[Mask, FData] = generangefilter(Data) returns a filtered
data matrix (FData). FData can also be created using FData =
Data(find(I),:).

[Mask, FData, FNames] = generangefilter(Data,Names) returns
a filtered names array (FNames), where Names is a cell array with the
names of the genes corresponding to each row in Data. You can also
create FNames using FNames = Names(I).

generangefilter(..., 'PropertyName', PropertyValue,...)
defines optional properties using property name/value pairs.

generangefilter(..., 'Percentile', PercentileValue) removes
from the experimental data (Data) gene expression profiles with ranges
less than a specified percentile (PercentileValue).

generangefilter(..., 'AbsValue', AbsValueValue) removes from
Data gene expression profiles with ranges less than AbsValueValue.

generangefilter(..., 'LOGPercentile', LOGPercentileValue)
filters genes with profile ranges in the lowest percent of the log range
(LOGPercentileValue).

generangefilter(..., 'LOGValue', LOGValueValue) filters genes
with profile log ranges lower than LOGValueValue.

Examples load yeastdata

[mask, fyeastvalues, fgenes] = generangefilter(yeastvalues,genes);

References [1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an
Integrative Genomics, Cambridge, MA:MIT Press.

See Also Bioinformatics Toolbox functions: exprprofrange, exprprofvar,
geneentropyfilter, genelowvalfilter, genevarfilter

2-210

geneticcode

Purpose Nucleotide codon to amino acid mapping

Syntax Map = geneticcode
geneticcode(GeneticCode)

Arguments GeneticCode Enter a code number or code name from the table .
If you use a code name, you can truncate the name
to the first two characters of the name.

Genetic Code

Code
Number

Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

4 Mold, Protozoan, Coelenterate Mitochondrial,
and Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

6 Ciliate, Dasycladacean, and Hexamita Nuclear

9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid

12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

2-211

geneticcode

Code
Number

Code Name

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

Description Map = geneticcode returns a structure with a mapping of nucleotide
codons to amino acids for the standard genetic code.

geneticcode(GeneticCode) returns a structure of the mapping for
alternate genetic codes, where GeneticCode is either of the following:

• The transl_table (code) number from the NCBI Genetics Web page

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

• One of the supported names in the table above

Examples List the mapping of nucleotide codons to amino acids for a specific
genetic code.

wormcode = geneticcode('Flatworm Mitochondrial');

See Also Bioinformatics Toolbox functions: aa2nt, aminolookup, baselookup,
codonbias, dnds, dndsml, nt2aa, revgeneticcode, seqshoworfs,
seqtool

2-212

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

genevarfilter

Purpose Filter genes with small profile variance

Syntax Mask = genevarfilter(Data)
[Mask, FData] = genevarfilter(Data)
[Mask, FData, FNames] = genevarfilter(Data,Names)
genevarfilter(..., 'PropertyName', PropertyValue,...)
genevarfilter(..., 'Percentile', PercentileValue)
genevarfilter(..., 'AbsValue', AbsValValue)

Arguments
Data Matrix where each row corresponds to a gene. The first

column is the names of the genes, and each additional
column is the results from an experiment.

Names Cell array with the name of a gene for each row of
experimental data. Names has same number of rows as
Data with each row containing the name or ID of the
gene in the data set.

Percentile Property to specify a percentile below which gene
expression profiles are removed. Enter a value from
0 to 100.

AbsValue Property to specify an absolute value below which gene
expression profiles are removed.

Description Gene profiling experiments have genes that exhibit little variation in
the profile and are generally not of interest in the experiment. These
genes are commonly removed from the data.

Mask = genevarfilter(Data) calculates the variance for each gene
expression profile in Data and then identifies the expression profiles
with a variance less than the 10th percentile.

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with a variance greater than
the threshold have a value of 1, and those with a variance less than
the threshold are 0.

2-213

genevarfilter

[Mask, FData] = genevarfilter(Data) returns the filtered
data matrix (FData). You can also create FData using FData =
Data(find(I),:).

[Mask, FData, FNames] = genevarfilter(Data,Names) returns a
filtered names array (FNames). Names is a cell array of the names of the
genes corresponding to each row of Data. FNames can also be created
using FNames = Names(I).

genevarfilter(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

genevarfilter(..., 'Percentile', PercentileValue) removes
from the experimental data (Data) gene expression profiles with a
variance less than the percentile (Percentile).

genevarfilter(..., 'AbsValue', AbsValValue) removes from Data
gene expression profiles with a variance less than AbsValue.

Examples load yeastdata
[fyeastvalues, fgenes] = genevarfilter(yeastvalues,genes);

References [1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an
Integrative Genomics, Cambridge, MA:MIT Press.

See Also Bioinformatics Toolbox functions: exprprofrange, exprprofvar,
generangefilter, geneentropyfilter, genelowvalfilter

2-214

genpeptread

Purpose Read data from GenPept file

Syntax GenPeptData = genpeptread('File')

Arguments File GenPept formatted file (ASCII text file). Enter a file
name, a path and file name, or a URL pointing to a
file. File can also be a MATLAB character array that
contains the text of a GenPept file.

Description genpeptread reads data from a GenPept formatted file into a MATLAB
structure.

Note NCBI has changed the name of their protein search engine
from GenPept to Entrez Protein. However, the function names in
Bioinformatics Toolbox (getgenpept and genpeptread) are unchanged
representing the still-used GenPept report format.

GenPeptData = genpeptread('File') reads in the GenPept formatted
sequence from File and creates a structure GenPeptData, containing
fields corresponding to the GenPept keywords. Each separate sequence
listed in File is stored as a separate element of the structure.
GenPeptDATA contains these fields:

Field

LocusName

LocusSequenceLength

LocusMoleculeType

LocusGenBankDivision

LocusModificationDate

Definition

2-215

genpeptread

Field

Accession

PID

Version

GI

DBSource

Keywords

Source

SourceDatabase

SourceOrganism

Reference.Number

Reference.Authors

Reference.Title

Reference.Journal

Reference.MedLine

Reference.PubMed

Reference.Remark

Comment

Features

Weight

Length

Sequence

Examples Get sequence information for the protein coded by the gene HEXA, save
to a file, and then read back into MATLAB.

getgenpept('p06865', 'ToFile', 'TaySachs_Protein.txt')
genpeptread('TaySachs_Protein.txt')

2-216

genpeptread

See Also Bioinformatics Toolbox functions: fastaread, genbankread,
getgenpept, pdbread, seqtool

2-217

geosoftread

Purpose Read Gene Expression Omnibus (GEO) SOFT format data

Syntax GEOSOFTData = geosoftread(File)

Arguments File Gene Expression Omnibus (GEO) SOFT format Sample file
(GSM) or Data Set file (GDS). Enter a file name, a path and
file name, or a URL pointing to a file.

Note File can also be a MATLAB character array that
contains the text of a GEO file.

Description GEOSOFTData = geosoftread(File) reads a Gene Expression Omnibus
(GEO) SOFT format Sample file (GSM) or Data Set file (GDS), and then
creates a MATLAB structure, GEOSOFTdata, with the following fields.

Fields

Scope

Accession

Header

ColumnDescriptions

ColumnNames

Data

Identifier (GDS files only)

IDRef (GDS files only)

Fields correspond to the GenBank keywords. Each separate entry listed
in File is stored as a separate element of the structure.

2-218

geosoftread

Examples Get data from the GEO Web site and save it to a file.

geodata = getgeodata('GSM3258','ToFile','GSM3258.txt');

Use geosoftread to access a local copy of a GEO file instead of accessing
it from the GEO Web site.

geodata = geosoftread('GSM3258.txt')

See Also Bioinformatics Toolbox functions: galread, getgeodata, gprread,
sptread

2-219

getblast

Purpose Retrieve BLAST report from NCBI Web site

Syntax Data = getblast(RID)
Data = getblast(RID, ...'Descriptions',
DescriptionsValue, ...)
Data = getblast(RID, ...'Alignments', AlignmentsValue, ...)
Data = getblast(RID, ...'ToFile', ToFileValue, ...)
Data = getblast(RID, ...'FileFormat', FileFormatValue, ...)
Data = getblast(RID, ...'WaitTime', WaitTimeValue, ...)

Arguments
RID Request ID for the NCBI BLAST report, such

as returned by the blastncbi function.

DescriptionsValue Integer that specifies the number of
descriptions in a report. Choices are any value
≥ 1 and ≤ 500. Default is 100.

AlignmentsValue Integer that specifies the number of
alignments to include in the report. Choices
are any value ≥ 1 and ≤ 500. Default is 50.

ToFileValue String specifying a file name for saving report
data.

FileFormatValue String specifying the format of the file.
Choices are 'text' (default) or 'html'.

WaitTimeValue Positive value that specifies a time (in
minutes) for MATLAB to wait for a report
from the NCBI Web site to be available. If the
report is still not available after the wait time,
getblast returns an error message. Default
behavior is to not wait for a report.

Tip Use the RTOE returned by the blastncbi
function as the WaitTimeValue.

2-220

getblast

Return
Values

Data MATLAB structure containing fields
corresponding to BLAST keywords and data
from an NCBI BLAST report.

Description The Basic Local Alignment Search Tool (BLAST) offers a fast and
powerful comparative analysis of protein and nucleotide sequences
against known sequences in online databases. getblast parses NCBI
BLAST reports, including blastn, blastp, psiblast, blastx, tblastn,
tblastx, and megablast reports.

Data = getblast(RID) reads RID, the Request ID for the NCBI BLAST
report, and returns the report data in Data, a MATLAB structure. The
Request ID, RID, must be recently generated because NCBI purges
reports after 24 hours.

Data = getblast(RID, ...'PropertyName', PropertyValue, ...)
calls getblast with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case
insensitive. These property name/property value pairs are as follows:

Data = getblast(RID, ...'Descriptions', DescriptionsValue,
...) specifies the number of descriptions in a report. Choices are any
integer ≥ 1 and ≤ 500. Default is 100.

Data = getblast(RID, ...'Alignments', AlignmentsValue, ...)
specifies the number of alignments to include in the report. Choices are
any integer ≥ 1 and ≤ 500. Default is 50.

Data = getblast(RID, ...'ToFile', ToFileValue, ...) saves the
NCBI BLAST report data to a specified file. The default format for
the file is 'text', but you can specify 'html' with the 'FileFormat'
property.

Data = getblast(RID, ...'FileFormat', FileFormatValue, ...)
specifies the format for the report. Choices are 'text' (default) or
'html'.

2-221

getblast

Data = getblast(RID, ...'WaitTime', WaitTimeValue, ...)
pauses MATLAB and waits a specified time (in minutes) for a report
from the NCBI Web site to be available. If the report is still unavailable
after the wait time, getblast returns an error message. Choices are
any positive value. Default behavior is to not wait for a report.

Tip Use the RTOE returned by the blastncbi function as the
WaitTimeValue.

For more information about reading and interpreting BLAST reports,
see:

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/tut1.html

Data contains the following fields.

Field Description

RID Request ID for retrieving results for a
specific NCBI BLAST search.

Algorithm NCBI algorithm used to do a BLAST
search.

Query Full sequence submitted to a BLAST
search.

Database All databases searched.

Hits.Name Name of a database sequence (subject
sequence) that matched the query
sequence.

Hits.Length Length of a subject sequence.

Hits.HSPs.Score Pair-wise alignment score for a
high-scoring sequence pair between the
query sequence and a subject sequence.

2-222

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/tut1.html

getblast

Field Description

Hits.HSPs.Expect Expectation value for a high-scoring
sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.Identities Identities (matches, possibles, and
percent) for a high-scoring sequence
pair between the query sequence and a
subject sequence.

Hits.HSPs.Positives Identical or similar residues
(matches, possibles, and percent)
for a high-scoring sequence pair
between the query sequence and a
subject amino acid sequence.

Note This field applies only to
translated nucleotide or amino acid
query sequences and/or databases.

Hits.HSPs.Gaps Nonaligned residues for a high-scoring
sequence pair between the query
sequence and a subject sequence.

Hits.HSPs.Frame Reading frame of the translated
nucleotide sequence for a high-scoring
sequence pair between the query
sequence and a subject sequence.

Note This field applies only when
performing translated searches, that
is, when using tblastx, tblastn, and
blastx.

2-223

getblast

Field Description

Hits.HSPs.Strand Sense (Plus = 5’ to 3’ and Minus =
3’ to 5’) of the DNA strands for a
high-scoring sequence pair between the
query sequence and a subject sequence.

Note This field applies only when
using a nucleotide query sequence and
database.

Hits.HSPs.Alignment Three-row matrix showing the
alignment for a high-scoring sequence
pair between the query sequence and a
subject sequence.

Hits.HSPs.QueryIndices Indices of the query sequence residue
positions for a high-scoring sequence
pair between the query sequence and a
subject sequence.

Hits.HSPs.SubjectIndices Indices of the subject sequence residue
positions for a high-scoring sequence
pair between the query sequence and a
subject sequence.

Statistics Summary of statistical details about
the performed search, such as lambda
values, gap penalties, number of
sequences searched, and number of
hits.

Examples 1 Create an NCBI BLAST report request using a GenPept accession
number.

RID = blastncbi('AAA59174','blastp','expect',1e-10)

2-224

getblast

RID =

'1175088155-31624-126008617054.BLASTQ3'

2 Pass the Request ID for the report to the getblast function to parse
the report, and return the report data in a MATLAB structure, and
save the report data to a text file.

reportStruct = getblast(RID,'ToFile','AAA59174_BLAST.rpt')

reportStruct =

RID: '1175093633-2786-174709873694.BLASTQ3'
Algorithm: 'BLASTP 2.2.16 [Mar-11-2007]'

Query: [1x63 char]
Database: [1x96 char]

Hits: [1x50 struct]
Statistics: [1x1034 char]

Note You may need to wait for the report to become available on the
NCBI Web site before you can run the preceding command.

References For more information about reading and interpreting NCBI BLAST
reports, see:

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Blast_output.html

See Also Bioinformatics Toolbox functions: blastncbi, blastread

2-225

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Blast_output.html

getembl

Purpose Sequence information from EMBL database

Syntax Data = getembl('AccessionNumber)
getembl(..., 'PropertyName', PropertyValue,...)
getembl(..., 'ToFile', ToFileValue)
getembl(..., 'SequenceOnly', SequenceOnlyValue)

Arguments AccessionNumber Unique identifier for a sequence record. Enter a
unique combination of letters and numbers.

ToFileValue Property to specify the location and file name
for saving data. Enter either a file name or a
path and file name supported by your system
(ASCII text file).

SequenceOnlyValue Property to control getting a sequence without
the metadata. Enter either true or false
(default).

Description getembl retrieves information from the European Molecular Biology
Laboratory (EMBL) database for nucleotide sequences. This database is
maintained by the European Bioinformatics Institute (EBI). For more
details about the EMBL-Bank database, see

http://www.ebi.ac.uk/embl/Documentation/index.html

Data = getembl('AccessionNumber) searches for the accession
number in the EMBL database (http://www.ebi.ac.uk/embl) and
returns a MATLAB structure containing the following fields:

Field

Comments

Identification

Accession

2-226

http://www.ebi.ac.uk/embl/Documentation/index.html
http://www.ebi.ac.uk/embl

getembl

Field

SequenceVersion

DateCreated

DateUpdated

Description

Keyword

OrganismSpecies

OrganismClassification

Organelle

Reference

DatabaseCrossReference

Feature

BaseCount

Sequence

getembl(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

getembl(..., 'ToFile', ToFileValue) returns a structure
containing information about the sequence and saves the information in
a file using an EMBL data format. If you do not give a location or path
to the file, the file is stored in the MATLAB current directory. Read an
EMBL formatted file back into MATLAB using the function emblread.

getembl(..., 'SequenceOnly', SequenceOnlyValue) , if
SequenceOnlyValue is true, returns the sequence information without
the metadata.

Examples Retrieve data for the rat liver apolipoprotein A-I.

emblout = getembl('X00558')

2-227

getembl

Retrieve data for the rat liver apolipoprotein and save in the file
rat_protein. If a file name is given without a path, the file is stored in
the current directory.

Seq = getembl('X00558','ToFile','c:\project\rat_protein.txt')

Retrieve only the sequence for the rat liver apolipoprotein.

Seq = getembl('X00558','SequenceOnly',true)

See Also Bioinformatics Toolbox functions: emblread, getgenbank, getgenpept,
getpdb, seqtool

2-228

getgenbank

Purpose Sequence information from GenBank database

Syntax Data = getgenbank('AccessionNumber')
getgenbank('AccessionNumber')
getgenbank(..., 'PropertyName', PropertyValue,...)
getgenbank(..., 'ToFile', ToFileValue)
getgenbank(..., 'FileFormat', FileFormatValue)
getgenbank(..., 'SequenceOnly', SequenceOnlyValue)

Arguments
AccessionNumber Unique identifier for a sequence record. Enter

a unique combination of letters and numbers.

ToFileValue Property to specify the location and file name
for saving data. Enter either a file name or a
path and file name supported by your system
(ASCII text file).

FileFormatValue Property to select the format for the file
specified with the property ToFileValue. Enter
either 'GenBank' or 'FASTA'.

SequenceOnlyValue Property to control getting the sequence only.
Enter either true or false.

Description getgenbank retrieves nucleotide and amino acid sequence information
from the GenBank database. This database is maintained by the
National Center for Biotechnology Information (NCBI). For more details
about the GenBank database, see

http://www.ncbi.nlm.nih.gov/Genbank/

Data = getgenbank('AccessionNumber') searches for the accession
number in the GenBank database and returns a MATLAB structure
containing information for the sequence. If an error occurs while
retrieving the GenBank formatted information, then an attempt is
make to retrieve the FASTA formatted data.

2-229

http://www.ncbi.nlm.nih.gov/Genbank/

getgenbank

getgenbank('AccessionNumber') displays information in the
MATLAB Command Window without returning data to a variable. The
displayed information includes hyperlinks to the URLs for searching
and retrieving data.

getgenbank(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

getgenbank(..., 'ToFile', ToFileValue) saves the data returned
from GenBank in a file. If you do not give a location or path to the file,
the file is stored in the MATLAB current directory. Read a GenBank
formatted file back into MATLAB using the function genbankread.

getgenbank(..., 'FileFormat', FileFormatValue) returns the
sequence in the specified format (FileFormatValue).

getgenbank(..., 'SequenceOnly', SequenceOnlyValue) when
SequenceOnly is true, returns only the sequence as a character array.
When the properties SequenceOnly and ToFile are used together, the
output file is in the FASTA format.

Examples To retrieve the sequence from chromosome 19 that codes for the
human insulin receptor and store it in a structure, S, in the MATLAB
Command Window, type:

S = getgenbank('M10051')

S =

LocusName: 'HUMINSR'

LocusSequenceLength: '4723'

LocusNumberofStrands: ''

LocusTopology: 'linear'

LocusMoleculeType: 'mRNA'

LocusGenBankDivision: 'PRI'

LocusModificationDate: '06-JAN-1995'

Definition: 'Human insulin receptor mRNA, complete cds.'

Accession: 'M10051'

Version: 'M10051.1'

2-230

getgenbank

GI: '186439'

Project: []

Keywords: 'insulin receptor; tyrosine kinase.'

Segment: []

Source: 'Homo sapiens (human)'

SourceOrganism: [4x65 char]

Reference: {[1x1 struct]}

Comment: [14x67 char]

Features: [51x74 char]

CDS: [1x1 struct]

Sequence: [1x4723 char]

SearchURL: [1x105 char]

RetrieveURL: [1x95 char]

See Also Bioinformatics Toolbox functions: genbankread, getembl, getgenpept,
getpdb,seqtool

2-231

getgenpept

Purpose Retrieve sequence information from GenPept database

Syntax Data = getgenpept('AccessionNumber')
getgenpept(...)
getgenpept(..., 'PropertyName', PropertyValue,...)
getgenpept(..., 'ToFile', ToFileValue)
getgenpept(..., 'FileFormat', FileFormatValue)
getgenpept(..., 'SequenceOnly', SequenceOnlyValue)

Arguments AccessionNumber Unique identifier for a sequence record. Enter a
combination of letters and numbers.

ToFileValue Property to specify the location and file name
for saving data. Enter either a file name or a
path and file name supported by your system
(ASCII text file).

FileFormatValue Property to select the format for the file specified
with the property ToFileValue. Enter either
'GenBank' or 'FASTA'.

SequenceOnlyValue Property to control getting the sequence without
metadata. Enter either true or false.

Description getgenpept retrieves a protein (amino acid) sequence and sequence
information from the GenPept database. This database is a translation
of the nucleotide sequences in GenBank and is maintained by the
National Center for Biotechnology Information (NCBI).

Note NCBI has changed the name of their protein search engine
from GenPept to Entrez Protein. However, the function names in
Bioinformatics Toolbox (getgenpept and genpeptread) are unchanged
representing the still-used GenPept report format.

2-232

getgenpept

For more details about the GenBank database, see

http://www.ncbi.nlm.nih.gov/Genbank/

Data = getgenpept('AccessionNumber') searches for the accession
number in the GenPept database and returns a MATLAB structure
containing for the sequence. If an error occurs while retrieving the
GenBank formatted information, then an attempt is make to retrieve
the FASTA formatted data.

getgenpept(...) displays the information to the screen without
returning data to a variable. The displayed information includes
hyperlinks to the URLs used to search for and retrieve the data.

getgenpept(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

getgenpept(..., 'ToFile', ToFileValue) saves the information in
a file. If you do not give a location or path to the file, the file is stored
in the MATLAB current directory. Read a GenPept formatted file back
into MATLAB using the function genpeptread

getgenpept(..., 'FileFormat', FileFormatValue) returns the
sequence in the specified format FileFormatValue.

getgenpept(..., 'SequenceOnly', SequenceOnlyValue)
returns only the sequence information without the metadata if
SequenceOnlyValue is true. When the properties SequenceOnly and
ToFile are used together, the output file is in the FASTA format.

Examples To retrieve the sequence for the human insulin receptor and store it in a
structure, Seq, in the MATLAB Command Window, type:

Seq = getgenpept('AAA59174')

Seq =

LocusName: 'AAA59174'
LocusSequenceLength: '1382'

LocusNumberofStrands: ''

2-233

http://www.ncbi.nlm.nih.gov/Genbank/

getgenpept

LocusTopology: 'linear'
LocusMoleculeType: ''

LocusGenBankDivision: 'PRI'
LocusModificationDate: '06-JAN-1995'

Definition: 'insulin receptor precursor.'
Accession: 'AAA59174'

Version: 'AAA59174.1'
GI: '307070'

Project: []
DBSource: 'locus HUMINSR accession M10051.1'
Keywords: ''

Source: 'Homo sapiens (human)'
SourceOrganism: [4x65 char]

Reference: {[1x1 struct]}
Comment: [14x67 char]

Features: [40x64 char]
Sequence: [1x1382 char]

SearchURL: [1x104 char]
RetrieveURL: [1x92 char]

See Also Bioinformatics Toolbox functions: genpeptread, getembl, getgenbank,
getpdb

2-234

getgeodata

Purpose Retrieve Gene Expression Omnibus (GEO) Sample (GSM) data

Syntax Data = getgeodata('AccessionNumber')
getgeodata(..., 'PropertyName', PropertyValue,...)
getgeodata(..., 'ToFile', ToFileValue)

Arguments AccessionNumber Unique identifier for a sequence record. Enter a
combination of letters and numbers.

ToFileValue Property to specify the location and file name
for saving data. Enter either a file name, or a
path and file name supported by your system
(ASCII text file).

Description Data = getgeodata('AccessionNumber') searches for the accession
number in the Gene Expression Omnibus database and returns a
MATLAB structure containing the following fields:

Field

Scope

Accession

Header

ColumnDescriptions

ColumnNames

Data

getgeodata(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

getgeodata(..., 'ToFile', ToFileValue) saves the data returned
from the database to a file. Read a GenPept formatted file back into
MATLAB using the function gensoftread.

2-235

getgeodata

Note Currently, Bioinformatics Toolbox supports only Sample (GSM)
records.

For more information, see

http://www.ncbi.nlm.nih.gov/About/disclaimer.html

Examples geoStruct = getgeodata('GSM1768')

See Also Bioinformatics Toolbox functions: geosoftread, getgenbank,
getgenpept

2-236

http://www.ncbi.nlm.nih.gov/About/disclaimer.html

gethmmalignment

Purpose Retrieve multiple sequence alignment associated with hidden Markov
model (HMM) profile from PFAM database

Syntax AlignStruct = gethmmalignment(PFAMNumber)
AlignStruct = gethmmalignment(PFAMAccessNumber)
AlignStruct = gethmmalignment(..., 'ToFile',
ToFileValue, ...)
AlignStruct = gethmmalignment(..., 'Type', TypeValue, ...)
AlignStruct = gethmmalignment(..., 'Mirror', MirrorValue,

...)
AlignStruct = gethmmalignment(..., 'IgnoreGaps',
IgnoreGaps,

...)

Arguments
PFAMNumber Integer specifying a protein family number of an

HMM profile record in the PFAM database. For
example, 2 is the protein family number for the
protein family PF0002.

PFAMAccessNumber String specifying a protein family accession
number of an HMM profile record in the PFAM
database. For example, PF00002.

ToFileValue String specifying a file name or a path and file
name for saving the data. If you specify only a
file name, that file will be saved in the MATLAB
Current Directory.

TypeValue String that specifies the set of alignments
returned. Choices are:
• full — Default. Returns all alignments that

fit the HMM profile.

• seed — Returns only the alignments used to
generate the HMM profile.

2-237

gethmmalignment

MirrorValue String that specifies a Web database. Choices are:
• Sanger (default)

• Janelia

IgnoreGapsValue Controls the removal of the symbols - and . from
the sequence. Choices are true or false (default).

Return
Values

AlignStruct MATLAB structure containing the multiple
sequence alignment associated with an HMM
profile.

Description AlignStruct = gethmmalignment(PFAMNumber) determines a protein
family accession number from PFAMNumber, an integer, searches the
PFAM database for the associated HMM profile record, retrieves the
multiple sequence alignment associated with the HMM profile, and
returns AlignStruct, a MATLAB structure containing the following
fields:

Field

Header

Sequence

AlignStruct = gethmmalignment(PFAMAccessNumber) searches
the PFAM database for the HMM profile record represented by
PFAMAccessNumber, a protein family accession number, retrieves the
multiple sequence alignment associated with the HMM profile, and
returns AlignStruct, a MATLAB structure.

AlignStruct = gethmmalignment(..., 'PropertyName',
PropertyValue, ...) calls gethmmalignment with optional properties
that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed
in single quotation marks and is case insensitive. These property
name/property value pairs are as follows:

2-238

gethmmalignment

AlignStruct = gethmmalignment(..., 'ToFile', ToFileValue,
...) saves the data returned from the PFAM database to a file specified
by ToFileValue.

Note You can read a FASTA-formatted file containing PFAM data back
into MATLAB using the fastaread function.

AlignStruct = gethmmalignment(..., 'Type', TypeValue, ...)
specifies the set of alignments returned. Choices are:

• full — Default. Returns all sequences that fit the HMM profile.

• seed — Returns only the sequences used to generate the HMM
profile.

AlignStruct = gethmmalignment(..., 'Mirror', MirrorValue,
...) specifies a Web database. Choices are:

• Sanger (default)

• Janelia

You can reach other mirror sites by passing the complete URL to the
fastaread function.

Note These mirror sites are maintained separately and may have
slight variations.

For more information about the PFAM database, see:

http://www.sanger.ac.uk/Software/Pfam/
http://pfam.janelia.org/

2-239

http://www.sanger.ac.uk/Software/Pfam/
http://pfam.janelia.org/

gethmmalignment

AlignStruct = gethmmalignment(..., 'IgnoreGaps',
IgnoreGaps, ...) controls the removal of the symbols - and . from
the sequence. Choices are true or false (default).

Examples To retrieve a multiple alignment of the sequences used to train the
HMM profile for global alignment to the 7-transmembrane receptor
protein in the secretin family, enter either of the following:

pfamalign = gethmmalignment(2,'Type','seed')

pfamalign = gethmmalignment('PF00002','Type','seed')

pfamalign =

32x1 struct array with fields:
Header
Sequence

See Also Bioinformatics Toolbox functions: fastaread, gethmmprof, gethmmtree,
multialignread, pfamhmmread

2-240

gethmmprof

Purpose Retrieve hidden Markov model (HMM) profile from PFAM database

Syntax HMMStruct = gethmmprof(PFAMName)
HMMStruct = gethmmprof(PFAMNumber)
HMMStruct = gethmmprof(PFAMAccessNumber)
HMMStruct = gethmmprof(..., 'ToFile', ToFileValue, ...)
HMMStruct = gethmmprof(..., 'Mode', ModeValue, ...)
HMMStruct = gethmmprof(..., 'Mirror', MirrorValue, ...)

Arguments PFAMName String specifying a protein family name (unique
identifier) of an HMM profile record in the PFAM
database. For example, 7tm_2.

PFAMNumber Integer specifying a protein family number of an
HMM profile record in the PFAM database. For
example, 2 is the protein family number for the
protein family PF0002.

PFAMAccessNumber String specifying a protein family accession
number of an HMM profile record in the PFAM
database. The string must include a version
number appended at the end of the accession
number. For example, PF00002.14.

Note While this is the most efficient way to
query the PFAM database, version numbers can
change, making your input invalid.

ToFileValue String specifying a file name or a path and file
name for saving the data. If you specify only a
file name, that file will be saved in the MATLAB
Current Directory.

2-241

gethmmprof

ModeValue String that specifies the returned alignment
mode. Choices are:
• ls — Default. Global alignment mode.

• fs — Local alignment mode.

MirrorValue String that specifies a Web database. Choices are:
• Sanger (default)

• Janelia

Return
Values

HMMStruct MATLAB structure containing information
retrieved from the PFAM database.

Description HMMStruct = gethmmprof(PFAMName) searches the PFAM database for
the record represented by PFAMName, a protein family name, retrieves
the HMM profile information, and stores it in HMMStruct, a MATLAB
structure, with the following fields:

Field

Name

PfamAccessionNumber

ModelDescription

ModelLength

Alphabet

MatchEmission

InsertEmission

NullEmission

BeginX

MatchX

2-242

gethmmprof

Field

InsertX

DeleteX

FlankingInsertX

LoopX

NullX

HMMStruct = gethmmprof(PFAMNumber) determines a protein
family accession number from PFAMNumber, an integer, searches the
PFAM database for the associated record, retrieves the HMM profile
information, and stores it in HMMStruct, a MATLAB structure.

HMMStruct = gethmmprof(PFAMAccessNumber) searches the PFAM
database for the record represented by PFAMAccessNumber, a protein
family accession number, retrieves the HMM profile information, and
stores it in HMMStruct, a MATLAB structure.

Note While this is the most efficient way to query the PFAM database,
version numbers can change, making your input invalid.

HMMStruct = gethmmprof(..., 'PropertyName',
PropertyValue, ...) calls gethmmprof with optional
properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must
be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

HMMStruct = gethmmprof(..., 'ToFile', ToFileValue, ...)
saves the data returned from the PFAM database in a file specified
by ToFileValue.

2-243

gethmmprof

Note You can read an HMM-formatted file back into MATLAB using
the pfamhmmread function.

HMMStruct = gethmmprof(..., 'Mode', ModeValue, ...) specifies
the returned alignment mode. Choices are:

• ls — Default. Global alignment mode.

• fs — Local alignment mode.

HMMStruct = gethmmprof(..., 'Mirror', MirrorValue, ...)
specifies a Web database. Choices are:

• Sanger (default)

• Janelia

You can reach other mirror sites by passing the complete URL to the
pfamhmmread function.

Note These mirror sites are maintained separately and may have
slight variations.

For more information about the PFAM database, see:

http://www.sanger.ac.uk/Software/Pfam/
http://pfam.janelia.org/

Examples To retrieve a hidden Markov model (HMM) profile for the global
alignment of the 7-transmembrane receptor protein in the secretin
family, enter either of the following:

hmm = gethmmprof(2)

2-244

http://www.sanger.ac.uk/Software/Pfam/
http://pfam.janelia.org/

gethmmprof

hmm = gethmmprof('7tm_2')

hmm =

Name: '7tm_2'
PfamAccessionNumber: 'PF00002.14'

ModelDescription: [1x42 char]
ModelLength: 296

Alphabet: 'AA'
MatchEmission: [296x20 double]

InsertEmission: [296x20 double]
NullEmission: [1x20 double]

BeginX: [297x1 double]
MatchX: [295x4 double]

InsertX: [295x2 double]
DeleteX: [295x2 double]

FlankingInsertX: [2x2 double]
LoopX: [2x2 double]
NullX: [2x1 double]

See Also Bioinformatics Toolbox functions: gethmmalignment, hmmprofalign,
hmmprofstruct, pfamhmmread, showhmmprof

2-245

gethmmtree

Purpose Phylogenetic tree data from PFAM database

Syntax Tree = gethmmtree(AccessionNumber)
gethmmtree(..., 'PropertyName', PropertyValue,...)
gethmmtree(..., 'ToFile', ToFileValue)
gethmmtree(..., 'Type', TypeValue)

Arguments
AccessionNumber Accession number in the PFAM database.

ToFileValue Property to specify the location and file name for
saving data. Enter either a file name or a path
and file name supported by your system (ASCII
text file).

TypeValue Property to control which alignments are included
in the tree. Enter either 'seed' or 'full'
(default).

Description Tree = gethmmtree(AccessionNumber) searches for the PFAM family
accession number in the PFAM database and returns an object (Tree)
containing a phylogenetic tree representative of the protein family.

gethmmtree(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

gethmmtree(..., 'ToFile', ToFileValue) saves the data returned
from the PFAM database in the file ToFileValue.

gethmmtree(..., 'Type', TypeValue) , when TypeValue is 'seed',
returns a tree with only the alignments used to generate the HMM
model. When TypeValue is 'full', returns a tree with all of the
alignments that match the model.

Examples Retrieve a phylogenetic tree built from the multiple aligned sequences
used to train the HMM profile model for global alignment. The PFAM
accession number PF00002 is for the 7-transmembrane receptor protein
in the secretin family.

2-246

gethmmtree

tree = gethmmtree(2, 'type', 'seed')
tree = gethmmtree('PF00002', 'type', 'seed')

See Also Bioinformatics Toolbox functions: gethmmalignment, phytreeread

2-247

getpdb

Purpose Retrieve protein structure data from Protein Data Bank (PDB) database

Syntax PDBStruct = getpdb(PDBid)
PDBStruct = getpdb(PDBid, ...'ToFile', ToFileValue, ...)
PDBStruct = getpdb(PDBid, ...'SequenceOnly',

SequenceOnlyValue, ...)

Arguments PDBid String specifying a unique identifier for a
protein structure record in the PDB database.

Note Each structure in the PDB database is
represented by a four-character alphanumeric
identifier. For example, 4hhb is the identifier
for hemoglobin.

ToFileValue String specifying a file name or a path and file
name for saving the PDB-formatted data. If you
specify only a file name, that file will be saved
in the MATLAB Current Directory.

Tip After you save the protein structure record
to a local PDB-formatted file, you can use the
pdbread function to read the file into MATLAB
offline or use the molviewer function to display
and manipulate a 3-D image of the structure.

SequenceOnlyValue Controls the return of the protein sequence only.
Choices are true or false (default). If there
is one sequence, it is returned as a character
array. If there are multiple sequences, they are
returned as a cell array.

2-248

getpdb

Return
Values

PDBStruct MATLAB structure containing a field for each
PDB record.

Description The Protein Data Bank (PDB) database is an archive of experimentally
determined 3-D biological macromolecular structure data. For more
information about the PDB format, see:

http://www.rcsb.org/pdb/file_formats/pdb/pdbguide2.2/guide2.2_frame.html

getpdb retrieves protein structure data from the Protein Data Bank
(PDB) database, which contains 3-D biological macromolecular
structure data.

PDBStruct = getpdb(PDBid) searches the PDB database for the
protein structure record specified by the identifier PDBid and returns
the MATLAB structure PDBStruct, which contains a field for each PDB
record. The following table summarizes the possible PDB records and
the corresponding fields in the MATLAB structure PDBStruct:

PDB Database Record Field in the MATLAB Structure

HEADER Header

OBSLTE Obsolete

TITLE Title

CAVEAT Caveat

COMPND Compound

SOURCE Source

KEYWDS Keywords

EXPDTA ExperimentData

AUTHOR Authors

REVDAT RevisionDate

SPRSDE Superseded

2-249

http://www.rcsb.org/pdb/file_formats/pdb/pdbguide2.2/guide2.2_frame.html

getpdb

PDB Database Record Field in the MATLAB Structure

JRNL Journal

REMARK 1 Remark1

REMARK N

Note N equals 2 through
999.

Remarkn

Note n equals 2 through 999.

DBREF DBReferences

SEQADV SequenceConflicts

SEQRES Sequence

FTNOTE Footnote

MODRES ModifiedResidues

HET Heterogen

HETNAM HeterogenName

HETSYN HeterogenSynonym

FORMUL Formula

HELIX Helix

SHEET Sheet

TURN Turn

SSBOND SSBond

LINK Link

HYDBND HydrogenBond

SLTBRG SaltBridge

CISPEP CISPeptides

SITE Site

2-250

getpdb

PDB Database Record Field in the MATLAB Structure

CRYST1 Cryst1

ORIGXn OriginX

SCALEn Scale

MTRIXn Matrix

TVECT TranslationVector

MODEL Model

ATOM Atom

SIGATM AtomSD

ANISOU AnisotropicTemp

SIGUIJ AnisotropicTempSD

TER Terminal

HETATM HeterogenAtom

CONECT Connectivity

PDBStruct = getpdb(PDBid, ...'PropertyName',
PropertyValue, ...) calls getpdb with optional properties
that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed
in single quotation marks and is case insensitive. These property
name/property value pairs are as follows:

PDBStruct = getpdb(PDBid, ...'ToFile', ToFileValue, ...)
saves the data returned from the database to a PDB-formatted file,
ToFileValue.

Tip After you save the protein structure record to a local PDB-formatted
file, you can use the pdbread function to read the file into MATLAB
offline or use the molviewer function to display and manipulate a 3-D
image of the structure.

2-251

getpdb

PDBStruct = getpdb(PDBid, ...'SequenceOnly',
SequenceOnlyValue, ...) controls the return of the protein
sequence only. Choices are true or false (default). If there is one
sequence, it is returned as a character array. If there are multiple
sequences, they are returned as a cell array.

The Sequence Field

The Sequence field is also a structure containing sequence information
in the following subfields:

• NumOfResidues

• ChainID

• ResidueNames — Contains the three-letter codes for the sequence
residues.

• Sequence — Contains the single-letter codes for the sequence
residues.

Note If the sequence has modified residues, then the ResidueNames
subfield might not correspond to the standard three-letter amino acid
codes. In this case, the Sequence subfield will contain the modified
residue code in the position corresponding to the modified residue. The
modified residue code is provided in the ModifiedResidues field.

The Model Field

The Model field is also a structure or an array of structures containing
coordinate information. If the MATLAB structure contains one model,
the Model field is a structure containing coordinate information for that
model. If the MATLAB structure contains multiple models, the Model
field is an array of structures containing coordinate information for
each model. The Model field contains the following subfields:

• Atom

• AtomSD

2-252

getpdb

• AnisotropicTemp

• AnisotropicTempSD

• Terminal

• HeterogenAtom

The Atom Field

The Atom field is also an array of structures containing the following
subfields:

• AtomSerNo

• AtomName

• altLoc

• resName

• chainID

• resSeq

• iCode

• X

• Y

• Z

• occupancy

• tempFactor

• segID

• element

• charge

• AtomNameStruct — Contains three subfields: chemSymbol,
remoteInd, and branch.

2-253

getpdb

Examples Retrieve the structure information for the electron transport (heme)
protein that has a PDB identifier of 5CYT, read the information into
a MATLAB structure pdbstruct, and save the information to a
PDB-formatted file electron_transport.pdb in the MATLAB Current
Directory.

pdbstruct = getpdb('5CYT', 'ToFile', 'electron_transport.pdb')

See Also Bioinformatics Toolbox functions: getembl, getgenbank, getgenpept,
molviewer, pdbdistplot, pdbread, pdbwrite

2-254

goannotread

Purpose Annotations from Gene Ontology annotated file

Syntax Annotation = goannotread('File')

Arguments
File

Description Annotation = goannotread('File') converts the contents of a Gene
Ontology annotated file (File) into an array of structs (Annotation).
Files should have the structure specified in

http://www.geneontology.org/GO.annotation.shtml#file

A list with some annotated files can be found at

http://www.geneontology.org/GO.current.annotations.shtml

Examples 1 Open a Web browser to

http://www.geneontology.org/GO.current.annotations.shtml

2 Download the file containing GO annotations for the gene products
of Saccharomyces cerevisiae (gene_association.sgd.gz) to your
MATLAB Current Directory.

3 Uncompress the file using the gunzip function.

gunzip('gene_association.sgd.gz')

4 Read the file into MATLAB.

SGDGenes = goannotread('gene_association.sgd');

5 Create a structure with GO annotations and get a list of genes.

S = struct2cell(SGDGenes);
genes = S(3,:)'

2-255

http://www.geneontology.org/GO.annotation.shtml#file
http://www.geneontology.org/GO.current.annotations.shtml
http://www.geneontology.org/GO.current.annotations.shtml

goannotread

See Also Bioinformatics Toolbox

• functions — geneont (object constructor), num2goid

• geneont object methods — getancestors, getdescendants,
getmatrix, getrelatives

2-256

gonnet

Purpose Gonnet scoring matrix

Syntax gonnet

Description gonnet returns the Gonnet matrix.

The Gonnet matrix is the recommended mutation matrix for initially
aligning protein sequences. Matrix elements are ten times the
logarithmic of the probability that the residues are aligned divided by
the probability that the residues are aligned by chance, and then matrix
elements are normalized to 250 PAM units.

Expected score = -0.6152, Entropy = 1.6845 bits Lowest score = -8,
Highest score = 14.2

Order:

A R N D C Q E G H I L K M F P S T W Y V B Z X *

References [1] Gaston H, Gonnet M, Cohen A, Benner S (1992), “Exhaustive
matching of the entire protein sequence database”, Science,
256:1443-1445.

See Also Bioinformatics Toolbox functions blosum, dayhoff, pam

2-257

gprread

Purpose Read microarray data from GenePix Results (GPR) file

Syntax GPRData = gprread('File')
gprread(..., 'PropertyName', PropertyValue,...)
gprread(..., 'CleanColNames', CleanColNamesValue)

Arguments
File GenePix Results formatted file (file extension

GPR). Enter a file name or a path and file
name.

CleanColNamesValue Property to control creating column names
that MATLAB can use as variable names.

Description GPRData = gprread('File') reads GenePix results data from File
and creates a MATLAB structure (GPRData) with the following fields:

Field

Header

Data

Blocks

Columns

Rows

Names

IDs

ColumnNames

Indices

Shape

gprread(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

2-258

gprread

gprread(..., 'CleanColNames', CleanColNamesValue). A GPR
file may contain column names with spaces and some characters
that MATLAB cannot use in MATLAB variable names. If
CleanColNamesValue is true, gprread returns names in the field
ColumnNames that are valid MATLAB variable names and names that
you can use in functions. By default, CleanColNamesValue is false
and the field ColumnNames may contain characters that are invalid for
MATLAB variable names.

The field Indices of the structure contains MATLAB indices that can
be used for plotting heat maps of the data.

For more details on the GPR format, see

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gpr

http://www.moleculardevices.com/pages/software/gn_gpr_format_history.html

For a list of supported file format versions, see

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html

GenePix is a registered trademark of Molecular Devices Corporation.

Examples % Read in a sample GPR file and plot the median foreground
% intensity for the 635 nm channel.
gprStruct = gprread('mouse_a1pd.gpr')
maimage(gprStruct,'F635 Median');

% Alternatively you can create a similar plot using
% more basic graphics commands.
F635Median = magetfield(gprStruct,'F635 Median');
imagesc(F635Median(gprStruct.Indices));
colormap bone
colorbar;

2-259

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gpr
http://www.moleculardevices.com/pages/software/gn_gpr_format_history.html
http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html

gprread

See Also Bioinformatics Toolbox functions: affyread, agferead,
celintensityread, galread, geosoftread, imageneread, magetfield,
sptread

2-260

graphallshortestpaths

Purpose Find all shortest paths in graph

Syntax [dist] = graphallshortestpaths(G)
[dist] = graphallshortestpaths(G, ...'Directed',
DirectedValue, ...)
[dist] = graphallshortestpaths(G, ...'Weights', WeightsValue,

...)

Arguments
G N-by-N sparse matrix that represents a graph.

Nonzero entries in matrix G represent the weights
of the edges.

DirectedValue Property that indicates whether the graph
is directed or undirected. Enter false for an
undirected graph. This results in the upper triangle
of the sparse matrix being ignored. Default is true.

WeightsValue Column vector that specifies custom weights for
the edges in matrix G. It must have one entry
for every nonzero value (edge) in matrix G. The
order of the custom weights in the vector must
match the order of the nonzero values in matrix G
when it is traversed column-wise. This property
lets you use zero-valued weights. By default,
graphallshortestpaths gets weight information
from the nonzero entries in matrix G.

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

[dist] = graphallshortestpaths(G) finds the shortest paths
between every pair of nodes in the graph represented by matrix G, using
Johnson’s algorithm. Input G is an N-by-N sparse matrix that represents
a graph. Nonzero entries in matrix G represent the weights of the edges.

2-261

graphallshortestpaths

Output dist is an N-by-N matrix where dist(S,T) is the distance of
the shortest path from node S to node T. A 0 in this matrix indicates the
source node; an Inf is an unreachable node. The pred output is the
predecessor map of the winning paths.

Johnson’s algorithm has a time complexity of O(N*log(N)+N*E), where
N and E are the number of nodes and edges respectively.

[...] = graphallshortestpaths (G, 'PropertyName',
PropertyValue, ...) calls graphallshortestpaths with optional
properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must
be enclosed in single quotes and is case insensitive. These property
name/property value pairs are as follows:

[dist] = graphallshortestpaths(G, ...'Directed',
DirectedValue, ...) indicates whether the graph is directed
or undirected. Set DirectedValue to false for an undirected graph.
This results in the upper triangle of the sparse matrix being ignored.
Default is true.

[dist] = graphallshortestpaths(G, ...'Weights',
WeightsValue, ...) lets you specify custom weights for the
edges. WeightsValue is a column vector having one entry for every
nonzero value (edge) in matrix G. The order of the custom weights in the
vector must match the order of the nonzero values in matrix G when it is
traversed column-wise. This property lets you use zero-valued weights.
By default, graphallshortestpaths gets weight information from the
nonzero entries in matrix G.

Examples Finding All Shortest Paths in a Directed Graph

1 Create and view a directed graph with 6 nodes and 11 edges.

W = [.41 .99 .51 .32 .15 .45 .38 .32 .36 .29 .21];
DG = sparse([6 1 2 2 3 4 4 5 5 6 1],[2 6 3 5 4 1 6 3 4 3 5],W)

DG =

2-262

graphallshortestpaths

(4,1) 0.4500
(6,2) 0.4100
(2,3) 0.5100
(5,3) 0.3200
(6,3) 0.2900
(3,4) 0.1500
(5,4) 0.3600
(1,5) 0.2100
(2,5) 0.3200
(1,6) 0.9900
(4,6) 0.3800

view(biograph(DG,[],'ShowWeights','on'))

2-263

graphallshortestpaths

2 Find all the shortest paths between every pair of nodes in the
directed graph.

graphallshortestpaths(DG)

ans =

0 1.3600 0.5300 0.5700 0.2100 0.9500
1.1100 0 0.5100 0.6600 0.3200 1.0400
0.6000 0.9400 0 0.1500 0.8100 0.5300

2-264

graphallshortestpaths

0.4500 0.7900 0.6700 0 0.6600 0.3800
0.8100 1.1500 0.3200 0.3600 0 0.7400
0.8900 0.4100 0.2900 0.4400 0.7300 0

The resulting matrix shows the shortest path from node 1 (first row)
to node 6 (sixth column) is 0.95. You can see this in the graph by
tracing the path from node 1 to node 5 to node 4 to node 6 (0.21 +
0.36 + 0.38 = 0.95).

Finding All Shortest Paths in an Undirected Graph

1 Create and view an undirected graph with 6 nodes and 11 edges.

UG = tril(DG + DG')

UG =

(4,1) 0.4500
(5,1) 0.2100
(6,1) 0.9900
(3,2) 0.5100
(5,2) 0.3200
(6,2) 0.4100
(4,3) 0.1500
(5,3) 0.3200
(6,3) 0.2900
(5,4) 0.3600
(6,4) 0.3800

view(biograph(UG,[],'ShowArrows','off','ShowWeights','on'))

2-265

graphallshortestpaths

2 Find all the shortest paths between every pair of nodes in the
undirected graph.

graphallshortestpaths(UG,'directed',false)

ans =

0 0.5300 0.5300 0.4500 0.2100 0.8300
0.5300 0 0.5100 0.6600 0.3200 0.7000
0.5300 0.5100 0 0.1500 0.3200 0.5300

2-266

graphallshortestpaths

0.4500 0.6600 0.1500 0 0.3600 0.3800
0.2100 0.3200 0.3200 0.3600 0 0.7400
0.8300 0.7000 0.5300 0.3800 0.7400 0

The resulting matrix is symmetrical because it represents an
undirected graph. It shows the shortest path from node 1 (first row)
to node 6 (sixth column) is 0.83. You can see this in the graph by
tracing the path from node 1 to node 4 to node 6 (0.45 + 0. 38 = 0.83).
Because UG is an undirected graph, we can use the edge between node
1 and node 4, which we could not do in the directed graph DG.

References [1] Johnson, D.B. (1977). Efficient algorithms for shortest paths in
sparse networks. Journal of the ACM 24(1), 1-13.

[2] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: graphconncomp, graphisdag,
graphisomorphism, graphisspantree, graphmaxflow,
graphminspantree, graphpred2path, graphshortestpath,
graphtopoorder, graphtraverse

Bioinformatics Toolbox method of biograph object: allshortestpaths

2-267

graphconncomp

Purpose Find strongly or weakly connected components in graph

Syntax [S, C] = graphconncomp(G)
[S, C] = graphconncomp(G, ...'Directed', DirectedValue, ...)
[S, C] = graphconncomp(G, ...'Weak', WeakValue, ...)

Arguments
G N-by-N sparse matrix that represents a graph.

Nonzero entries in matrix G indicate the presence
of an edge.

DirectedValue Property that indicates whether the graph is
directed or undirected. Enter false for an
undirected graph. This results in the upper
triangle of the sparse matrix being ignored.
Default is true. A DFS-based algorithm computes
the connected components. Time complexity is
O(N+E), where N and E are number of nodes and
edges respectively.

WeakValue Property that indicates whether to find weakly
connected components or strongly connected
components. A weakly connected component
is a maximal group of nodes that are mutually
reachable by violating the edge directions. Set
WeakValue to true to find weakly connected
components. Default is false, which finds strongly
connected components. The state of this parameter
has no effect on undirected graphs because weakly
and strongly connected components are the same
in undirected graphs. Time complexity is O(N+E),
where N and E are number of nodes and edges
respectively.

2-268

graphconncomp

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

[S, C] = graphconncomp(G) finds the strongly connected components
of the graph represented by matrix G using Tarjan’s algorithm. A
strongly connected component is a maximal group of nodes that are
mutually reachable without violating the edge directions. Input G is
an N-by-N sparse matrix that represents a graph. Nonzero entries in
matrix G indicate the presence of an edge.

The number of components found is returned in S, and C is a vector
indicating to which component each node belongs.

Tarjan’s algorithm has a time complexity of O(N+E), where N and E are
the number of nodes and edges respectively.

[S, C] = graphconncomp(G, ...'PropertyName',
PropertyValue, ...) calls graphconncomp with optional
properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must
be enclosed in single quotes and is case insensitive. These property
name/property value pairs are as follows:

[S, C] = graphconncomp(G, ...'Directed', DirectedValue, ...)
indicates whether the graph is directed or undirected. Set
directedValue to false for an undirected graph. This results in the
upper triangle of the sparse matrix being ignored. Default is true.
A DFS-based algorithm computes the connected components. Time
complexity is O(N+E), where N and E are number of nodes and edges
respectively.

[S, C] = graphconncomp(G, ...'Weak', WeakValue, ...) indicates
whether to find weakly connected components or strongly connected
components. A weakly connected component is a maximal group of
nodes that are mutually reachable by violating the edge directions.
Set WeakValue to true to find weakly connected components. Default
is false, which finds strongly connected components. The state of this

2-269

graphconncomp

parameter has no effect on undirected graphs because weakly and
strongly connected components are the same in undirected graphs.
Time complexity is O(N+E), where N and E are number of nodes and
edges respectively.

Note By definition, a single node can be a strongly connected
component.

Note A directed acyclic graph (DAG) cannot have any strongly
connected components larger than one.

Examples 1 Create and view a directed graph with 10 nodes and 17 edges.

DG = sparse([1 1 1 2 2 3 3 4 5 6 7 7 8 9 9 9 9], ...
[2 6 8 3 1 4 2 5 4 7 6 4 9 8 10 5 3],true,10,10)

DG =

(2,1) 1
(1,2) 1
(3,2) 1
(2,3) 1
(9,3) 1
(3,4) 1
(5,4) 1
(7,4) 1
(4,5) 1
(9,5) 1
(1,6) 1
(7,6) 1
(6,7) 1
(1,8) 1
(9,8) 1

2-270

graphconncomp

(8,9) 1
(9,10) 1

h = view(biograph(DG));

2 Find the number of strongly connected components in the directed
graph and determine to which component each of the 10 nodes
belongs.

[S,C] = graphconncomp(DG)

2-271

graphconncomp

S =

4

C =

4 4 4 1 1 2 2 4 4 3

3 Color the nodes for each component with a different color.

colors = jet(S);
for i = 1:numel(h.nodes)

h.Nodes(i).Color = colors(C(i),:);
end

2-272

graphconncomp

References [1] Tarjan, R.E., (1972). Depth first search and linear graph algorithms.
SIAM Journal on Computing 1(2), 146–160.

[2] Sedgewick, R., (2002). Algorithms in C++, Part 5 Graph Algorithms
(Addison-Wesley).

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

2-273

graphconncomp

See Also Bioinformatics Toolbox functions: graphallshortestpaths,
graphisdag, graphisomorphism, graphisspantree, graphmaxflow,
graphminspantree, graphpred2path, graphshortestpath,
graphtopoorder, graphtraverse

Bioinformatics Toolbox method of biograph object: conncomp

2-274

graphisdag

Purpose Test for cycles in directed graph

Syntax graphisdag(G)

Arguments
G N-by-N sparse matrix that represents a directed graph. Nonzero

entries in matrix G indicate the presence of an edge.

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

graphisdag(G) returns logical 1 (true) if the directed graph represented
by matrix G is a directed acyclic graph (DAG) and logical 0 (false)
otherwise. G is an N-by-N sparse matrix that represents a directed
graph. Nonzero entries in matrix G indicate the presence of an edge.

Examples Testing for Cycles in Directed Graphs

1 Create and view a directed acyclic graph (DAG) with six nodes and
eight edges.

DG = sparse([1 1 1 2 2 3 4 6],[2 4 6 3 5 4 6 5],true,6,6)

DG =

(1,2) 1
(2,3) 1
(1,4) 1
(3,4) 1
(2,5) 1
(6,5) 1
(1,6) 1
(4,6) 1

2-275

graphisdag

view(biograph(DG))

2 Test for cycles in the DAG.

graphisdag(DG)

ans =

1

2-276

graphisdag

3 Add an edge to the DAG to make it cyclic, and then view the directed
graph.

DG(5,1) = true

DG =

(5,1) 1
(1,2) 1
(2,3) 1
(1,4) 1
(3,4) 1
(2,5) 1
(6,5) 1
(1,6) 1
(4,6) 1

>> view(biograph(DG))

2-277

graphisdag

4 Test for cycles in the new graph.

graphisdag(DG)

ans =

0

2-278

graphisdag

Testing for Cycles in a Very Large Graph (Greater Than 20,000
Nodes and 30,000 Edges)

1 Download the Gene Ontology database to a geneont object.

GO = geneont('live',true);

2 Convert the geneont object to a matrix.

CM = getmatrix(GO);

3 Test for cycles in the graph.

graphisdag(CM)

Creating a Random DAG

1 Create and view a random directed acyclic graph (DAG) with 15
nodes and 20 edges.

g = sparse([],[],true,15,15);
while nnz(g) < 20

edge = randsample(15*15,1); % get a random edge
g(edge) = true;
g(edge) = graphisdag(g);

end
view(biograph(g))

2 Test for cycles in the graph.

graphisdag(g)

References [1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: graphallshortestpaths,
graphconncomp, graphisomorphism, graphisspantree, graphmaxflow,

2-279

graphisdag

graphminspantree, graphpred2path, graphshortestpath,
graphtopoorder, graphtraverse

Bioinformatics Toolbox method of biograph object: isdag

2-280

graphisomorphism

Purpose Find isomorphism between two graphs

Syntax [Isomorphic, Map] = graphisomorphism(G1, G2)
[Isomorphic, Map] = graphisomorphism(G1, G2,'Directed',

DirectedValue)

Arguments
G1 N-by-N sparse matrix that represents a directed

or undirected graph. Nonzero entries in matrix G1
indicate the presence of an edge.

G2 N-by-N sparse matrix that represents a directed or
undirected graph. G2 must be the same (directed or
undirected) as G1.

DirectedValue Property that indicates whether the graphs are
directed or undirected. Enter false when both G1
and G2 are undirected graphs. In this case, the
upper triangles of the sparse matrices G1 and G2
are ignored. Default is true, meaning that both
graphs are directed.

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

[Isomorphic, Map] = graphisomorphism(G1, G2) returns logical 1
(true) in Isomorphic if G1 and G2 are isomorphic graphs, and logical
0 (false) otherwise. A graph isomorphism is a 1-to-1 mapping of
the nodes in the graph G1 and the nodes in the graph G2 such that
adjacencies are preserved. G1 and G2 are both N-by-N sparse matrices
that represent directed or undirected graphs. Return value Isomorphic
is Boolean. When Isomorphic is true, Map is a row vector containing
the node indices that map from G2 to G1. When Isomorphic is false,
the worst-case time complexity is O(N!), where N is the number of nodes.

2-281

graphisomorphism

[Isomorphic, Map] = graphisomorphism(G1,
G2,'Directed', DirectedValue) indicates whether the graphs are
directed or undirected. Set DirectedValue to false when both G1
and G2 are undirected graphs. In this case, the upper triangles of
the sparse matrices G1 and G2 are ignored. Default is true, meaning
that both graphs are directed.

Examples 1 Create and view a directed graph with 8 nodes and 11 edges.

m('ABCDEFGH') = [1 2 3 4 5 6 7 8];
g1 = sparse(m('ABDCDCGEFFG'),m('BCBDGEEFHGH'),true,8,8)

g1 =

(1,2) 1
(4,2) 1
(2,3) 1
(3,4) 1
(3,5) 1
(7,5) 1
(5,6) 1
(4,7) 1
(6,7) 1
(6,8) 1
(7,8) 1

view(biograph(g1,'ABCDEFGH'))

2-282

graphisomorphism

2 Set a random permutation vector and then create and view a new
permuted graph.

p = randperm(8)

2-283

graphisomorphism

p =

7 8 2 3 6 4 1 5

g2 = g1(p,p);
view(biograph(g2,'12345678'))

3 Check if the two graphs are isomorphic.

[F,Map] = graphisomorphism(g2,g1)

2-284

graphisomorphism

F =

1

Map =

7 8 2 3 6 4 1 5

Note that the Map row vector containing the node indices that map
from g2 to g1 is the same as the permutation vector you created in
step 2.

4 Reverse the direction of the D-G edge in the first graph, and then
check for isomorphism again.

g1(m('DG'),m('GD')) = g1(m('GD'),m('DG'));
view(biograph(g1,'ABCDEFGH'))

2-285

graphisomorphism

[F,M] = graphisomorphism(g2,g1)

F =

0

M =

2-286

graphisomorphism

[]

5 Convert the graphs to undirected graphs, and then check for
isomorphism.

[F,M] = graphisomorphism(g2+g2',g1+g1','directed',false)

F =

1

M =

7 8 2 3 6 4 1 5

References [1] Fortin, S. (1996). The Graph Isomorphism Problem. Technical
Report, 96-20, Dept. of Computer Science, University of Alberta,
Edomonton, Alberta, Canada.

[2] McKay, B.D. (1981). Practical Graph Isomorphism. Congressus
Numerantium 30, 45-87.

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: graphallshortestpaths,
graphconncomp, graphisdag, graphisspantree, graphmaxflow,
graphminspantree, graphpred2path, graphshortestpath,
graphtopoorder, graphtraverse

Bioinformatics Toolbox methods of biograph object: isomorphism

2-287

graphisspantree

Purpose Determine if tree is spanning tree

Syntax TF = graphisspantree(G)

Arguments
G N-by-N sparse matrix whose lower triangle represents an

undirected graph. Nonzero entries in matrix G indicate the
presence of an edge.

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

TF = graphisspantree(G) returns logical 1 (true) if G is a spanning
tree, and logical 0 (false) otherwise. A spanning tree must touch all the
nodes and must be acyclic. G is an N-by-N sparse matrix whose lower
triangle represents an undirected graph. Nonzero entries in matrix G
indicate the presence of an edge.

Examples 1 Create a phytree object from a phylogenetic tree file.

tr = phytreeread('pf00002.tree')
Phylogenetic tree object with 33 leaves (32 branches)

2 Create a connection matrix from the phytree object.

[CM,labels,dist] = getmatrix(tr);

3 Determine if the connection matrix is a spanning tree.

graphisspantree(CM)

ans =

1

2-288

graphisspantree

4 Add an edge between the root and the first leaf in the connection
matrix.

CM(end,1) = 1;

5 Determine if the modified connection matrix is a spanning tree.

graphisspantree(CM)

ans =

0

References [1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: graphallshortestpaths,
graphconncomp, graphisdag, graphisomorphism, graphmaxflow,
graphminspantree, graphpred2path, graphshortestpath,
graphtopoorder, graphtraverse

Bioinformatics Toolbox methods of biograph object: isspantree

2-289

graphmaxflow

Purpose Calculate maximum flow and minimum cut in directed graph

Syntax [MaxFlow, FlowMatrix, Cut] = graphmaxflow(G, SNode, TNode)
[...] = graphmaxflow(G, SNode, TNode, ...'Capacity',
CapacityValue, ...)
[...] = graphmaxflow(G, SNode, TNode, ...'Method', MethodValue,

...)

Arguments
G N-by-N sparse matrix that represents a directed

graph. Nonzero entries in matrix G represent the
capacities of the edges.

SNode Node in G.

TNode Node in G.

CapacityValue Column vector that specifies custom capacities for
the edges in matrix G. It must have one entry for
every nonzero value (edge) in matrix G. The order of
the custom capacities in the vector must match the
order of the nonzero values in matrix G when it is
traversed column-wise. By default, graphmaxflow
gets capacity information from the nonzero entries
in matrix G.

MethodValue String that specifies the algorithm used to find the
minimal spanning tree (MST). Choices are:
• 'Edmonds' — Uses the Edmonds and Karp

algorithm, the implementation of which is based
on a variation called the labeling algorithm. Time
complexity is O(N*E^2), where N and E are the
number of nodes and edges respectively.

• 'Goldberg' — Default algorithm. Uses the
Goldberg algorithm, which uses the generic
method known as preflow-push. Time complexity
is O(N^2*sqrt(E)), where N and E are the
number of nodes and edges respectively.

2-290

graphmaxflow

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

[MaxFlow, FlowMatrix, Cut] = graphmaxflow(G, SNode, TNode)
calculates the maximum flow of directed graph G from node SNode to
node TNode. Input G is an N-by-N sparse matrix that represents a
directed graph. Nonzero entries in matrix G represent the capacities of
the edges. Output MaxFlow is the maximum flow, and FlowMatrix is a
sparse matrix with all the flow values for every edge. FlowMatrix(X,Y)
is the flow from node X to node Y. Output Cut is a logical row vector
indicating the nodes connected to SNode after calculating the minimum
cut between SNode and TNode. If several solutions to the minimum cut
problem exist, then Cut is a matrix.

[...] = graphmaxflow(G, SNode, TNode, ...'PropertyName',
PropertyValue, ...) calls graphmaxflow with optional properties
that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed in
single quotes and is case insensitive. These property name/property
value pairs are as follows:

[...] = graphmaxflow(G, SNode, TNode, ...'Capacity',
CapacityValue, ...) lets you specify custom capacities for the edges.
CapacityValue is a column vector having one entry for every nonzero
value (edge) in matrix G. The order of the custom capacities in the
vector must match the order of the nonzero values in matrix G when
it is traversed column-wise. By default, graphmaxflow gets capacity
information from the nonzero entries in matrix G.

[...] = graphmaxflow(G, SNode, TNode, ...'Method',
MethodValue, ...) lets you specify the algorithm used to find the
minimal spanning tree (MST). Choices are:

• 'Edmonds' — Uses the Edmonds and Karp algorithm, the
implementation of which is based on a variation called the labeling

2-291

graphmaxflow

algorithm. Time complexity is O(N*E^2), where N and E are the
number of nodes and edges respectively.

• 'Goldberg' — Default algorithm. Uses the Goldberg algorithm,
which uses the generic method known as preflow-push. Time
complexity is O(N^2*sqrt(E)), where N and E are the number of
nodes and edges respectively.

Examples 1 Create a directed graph with six nodes and eight edges.

cm = sparse([1 1 2 2 3 3 4 5],[2 3 4 5 4 5 6 6],...
[2 3 3 1 1 1 2 3],6,6)

cm =

(1,2) 2
(1,3) 3
(2,4) 3
(3,4) 1
(2,5) 1
(3,5) 1
(4,6) 2
(5,6) 3

2 Calculate the maximum flow in the graph from node 1 to node 6.

[M,F,K] = graphmaxflow(cm,1,6)

M =

4

F =

(1,2) 2
(1,3) 2
(2,4) 1
(3,4) 1

2-292

graphmaxflow

(2,5) 1
(3,5) 1
(4,6) 2
(5,6) 2

K =

1 1 1 1 0 0
1 0 1 0 0 0

Notice that K is a two-row matrix because there are two possible
solutions to the minimum cut problem.

3 View the graph with the original capacities.

h = view(biograph(cm,[],'ShowWeights','on'))

2-293

graphmaxflow

4 View the graph with the calculated maximum flows.

view(biograph(F,[],'ShowWeights','on'))

2-294

graphmaxflow

5 Show one solution to the minimum cut problem in the original graph.

set(h.Nodes(K(1,:)),'Color',[1 0 0])

2-295

graphmaxflow

Notice that in the three edges that connect the source nodes (red)
to the destination nodes (yellow), the original capacities and the
calculated maximum flows are the same.

References [1] Edmonds, J. and Karp, R.M. (1972). Theoretical improvements in
the algorithmic efficiency for network flow problems. Journal of the
ACM 19, 248-264.

[2] Goldberg, A.V. (1985). A New Max-Flow Algorithm. MIT Technical
Report MIT/LCS/TM-291, Laboratory for Computer Science, MIT.

2-296

graphmaxflow

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: graphallshortestpaths,
graphconncomp, graphisdag, graphisomorphism, graphisspantree,
graphminspantree, graphpred2path, graphshortestpath,
graphtopoorder, graphtraverse

Bioinformatics Toolbox method of biograph object: maxflow

2-297

graphminspantree

Purpose Find minimal spanning tree in graph

Syntax [Tree, pred] = graphminspantree(G)
[Tree, pred] = graphminspantree(G, R)
[Tree, pred] = graphminspantree(..., 'Method', MethodValue, ...)
[Tree, pred] = graphminspantree(..., 'Weights', WeightsValue,

...)

Arguments
G N-by-N sparse matrix that represents an undirected graph.

Nonzero entries in matrix G represent the weights of the edges.

R Scalar between 1 and the number of nodes.

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

[Tree, pred] = graphminspantree(G) finds an acyclic subset of edges
that connects all the nodes in the undirected graph G and for which the
total weight is minimized. Weights of the edges are all nonzero entries
in the lower triangle of the N-by-N sparse matrix G. Output Tree is a
spanning tree represented by a sparse matrix. Output pred is a vector
containing the predecessor nodes of the minimal spanning tree (MST),
with the root node indicated by 0. The root node defaults to the first
node in the largest connected component. This computation requires
an extra call to the graphconncomp function.

[Tree, pred] = graphminspantree(G, R) sets the root of the
minimal spanning tree to node R.

[Tree,
pred] = graphminspantree(..., 'PropertyName', PropertyValue, ...)
calls graphminspantree with optional properties that use property
name/property value pairs. You can specify one or more properties in
any order. Each PropertyName must be enclosed in single quotes

2-298

graphminspantree

and is case insensitive. These property name/property value
pairs are as follows:

[Tree, pred] = graphminspantree(..., 'Method', MethodValue, ...)
lets you specify the algorithm used to find the minimal spanning tree
(MST). Choices are:

• 'Kruskal' — Grows the minimal spanning tree (MST) one edge at a
time by finding an edge that connects two trees in a spreading forest
of growing MSTs. Time complexity is O(E+X*log(N)), where X is the
number of edges no longer than the longest edge in the MST, and N
and E are the number of nodes and edges respectively.

• 'Prim' — Default algorithm. Grows the minimal spanning tree
(MST) one edge at a time by adding a minimal edge that connects
a node in the growing MST with any other node. Time complexity
is O(E*log(N)), where N and E are the number of nodes and edges
respectively.

Note When the graph is unconnected, Prim’s algorithm returns only
the tree that contains R, while Kruskal’s algorithm returns an MST
for every component.

[Tree, pred] = graphminspantree(..., 'Weights',
WeightsValue, ...) lets you specify custom weights for the
edges. WeightsValue is a column vector having one entry for every
nonzero value (edge) in matrix G. The order of the custom weights in the
vector must match the order of the nonzero values in matrix G when it
is traversed column-wise. By default, graphminspantree gets weight
information from the nonzero entries in matrix G.

Examples 1 Create and view an undirected graph with 6 nodes and 11 edges.

W = [.41 .29 .51 .32 .50 .45 .38 .32 .36 .29 .21];
DG = sparse([1 1 2 2 3 4 4 5 5 6 6],[2 6 3 5 4 1 6 3 4 2 5],W);

2-299

graphminspantree

UG = tril(DG + DG')

UG =

(2,1) 0.4100
(4,1) 0.4500
(6,1) 0.2900
(3,2) 0.5100
(5,2) 0.3200
(6,2) 0.2900
(4,3) 0.5000
(5,3) 0.3200
(5,4) 0.3600
(6,4) 0.3800
(6,5) 0.2100

view(biograph(UG,[],'ShowArrows','off','ShowWeights','on'))

2-300

graphminspantree

2 Find and view the minimal spanning tree of the undirected graph.

[ST,pred] = graphminspantree(UG)

ST =

(6,1) 0.2900
(6,2) 0.2900
(5,3) 0.3200
(5,4) 0.3600

2-301

graphminspantree

(6,5) 0.2100

pred =

0 6 5 5 6 1

view(biograph(ST,[],'ShowArrows','off','ShowWeights','on'))

2-302

graphminspantree

References [1] Kruskal, J.B. (1956). On the Shortest Spanning Subtree of a Graph
and the Traveling Salesman Problem. Proceedings of the American
Mathematical Society 7, 48-50.

[2] Prim, R. (1957). Shortest Connection Networks and Some
Generalizations. Bell System Technical Journal 36, 1389-1401.

[3] Siek, J.G. Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: graphallshortestpaths,
graphconncomp, graphisdag, graphisomorphism, graphisspantree,
graphmaxflow, graphpred2path, graphshortestpath,
graphtopoorder, graphtraverse

Bioinformatics Toolbox method of biograph object: minspantree

2-303

graphpred2path

Purpose Convert predecessor indices to paths

Syntax path = graphpred2path(pred, D)

Arguments
pred Row vector or matrix of predecessor node indices. The value

of the root (or source) node in pred must be 0.

D Destination node in pred.

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

path = graphpred2path(pred, D) traces back a path by following the
predecessor list in pred starting at destination node D.

The value of the root (or source) node in pred must be 0. If a NaN is
found when following the predecessor nodes, graphpred2path returns
an empty path.

If pred is a ... And D is
a ...

Then path is a ...

scalar row vector listing the nodes from the
root (or source) to D.

row vector of
predecessor
node indices row vector row cell array with every column

containing the path to the destination
for every element in D.

2-304

graphpred2path

If pred is a ... And D is
a ...

Then path is a ...

scalar column cell array with every row
containing the path for every row in
pred.

matrix

row vector matrix cell array with every row
containing the paths for the respective
row in pred, and every column
containing the paths to the respective
destination in D.

Note If D is omitted, the paths to all the destinations are calculated for
every predecessor listed in pred.

Examples 1 Create a phytree object from the phylogenetic tree file for the
GLR_HUMAN protein.

tr = phytreeread('pf00002.tree')
Phylogenetic tree object with 33 leaves (32 branches)

2 View the phytree object.

view(tr)

2-305

graphpred2path

3 From the phytree object, create a connection matrix to represent the
phylogenetic tree.

[CM,labels,dist] = getmatrix(tr);

4 Find the nodes from the root to one leaf in the phylogenetic tree
created from the phylogenetic tree file for the GLR_HUMAN protein.

root_loc = size(CM,1)

root_loc =

2-306

graphpred2path

65

glr_loc = strmatch('GLR',labels)

glr_loc =

28

[T,PRED]=graphminspantree(CM,root_loc);
PATH = graphpred2path(PRED,glr_loc)

PATH =

65 64 53 52 46 45 44 43 28

References [1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: graphallshortestpaths,
graphconncomp, graphisdag, graphisomorphism, graphisspantree,
graphmaxflow, graphminspantree, graphshortestpath,
graphtopoorder, graphtraverse

2-307

graphshortestpath

Purpose Solve shortest path problem in graph

Syntax [dist, path, pred] = graphshortestpath(G, S)
[dist, path, pred] = graphshortestpath(G, S, T)
[...] = graphshortestpath(..., 'Directed', DirectedValue, ...)
[...] = graphshortestpath(..., 'Method', MethodValue, ...)
[...] = graphshortestpath(..., 'Weights', WeightsValue, ...)

Arguments
G N-by-N sparse matrix that represents a graph.

Nonzero entries in matrix G represent the weights
of the edges.

S Node in G.

T Node in G.

DirectedValue Property that indicates whether the graph
is directed or undirected. Enter false for an
undirected graph. This results in the upper triangle
of the sparse matrix being ignored. Default is true.

2-308

graphshortestpath

MethodValue String that specifies the algorithm used to find the
shortest path. Choices are:
• 'Bellman-Ford' — Assumes weights of the

edges to be nonzero entries in sparse matrix G.
Time complexity is O(N*E), where N and E are
the number of nodes and edges respectively.

• 'BFS' — Breadth-first search. Assumes all
weights to be equal, and nonzero entries in
sparse matrix G to represent edges. Time
complexity is O(N+E), where N and E are the
number of nodes and edges respectively.

• 'Acyclic' — Assumes G to be a directed acyclic
graph and that weights of the edges are nonzero
entries in sparse matrix G. Time complexity is
O(N+E), where N and E are the number of nodes
and edges respectively.

• 'Dijkstra' — Default algorithm. Assumes
weights of the edges to be positive values
in sparse matrix G. Time complexity is
O(log(N)*E), where N and E are the number of
nodes and edges respectively.

WeightsValue Column vector that specifies custom weights for
the edges in matrix G. It must have one entry
for every nonzero value (edge) in matrix G. The
order of the custom weights in the vector must
match the order of the nonzero values in matrix G
when it is traversed column-wise. This property
lets you use zero-valued weights. By default,
graphshortestpaths gets weight information from
the nonzero entries in matrix G.

2-309

graphshortestpath

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

[dist, path, pred] = graphshortestpath(G, S) determines the
single-source shortest paths from node S to all other nodes in the
graph represented by matrix G. Input G is an N-by-N sparse matrix
that represents a graph. Nonzero entries in matrix G represent the
weights of the edges. dist are the N distances from the source to every
node (using Infs for nonreachable nodes and 0 for the source node).
path contains the winning paths to every node. pred contains the
predecessor nodes of the winning paths.

[dist, path, pred] = graphshortestpath(G, S, T) determines
the single source-single destination shortest path from node S to node T.

[...] = graphshortestpath(..., 'PropertyName',
PropertyValue, ...) calls graphshortestpath with optional
properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must
be enclosed in single quotes and is case insensitive. These property
name/property value pairs are as follows:

[...] = graphshortestpath(..., 'Directed', DirectedValue, ...)
indicates whether the graph is directed or undirected. Set
DirectedValue to false for an undirected graph. This results in the
upper triangle of the sparse matrix being ignored. Default is true.

[...] = graphshortestpath(..., 'Method', MethodValue, ...) lets
you specify the algorithm used to find the shortest path. Choices are:

• 'Bellman-Ford' — Assumes weights of the edges to be nonzero
entries in sparse matrix G. Time complexity is O(N*E), where N and E
are the number of nodes and edges respectively.

• 'BFS' — Breadth-first search. Assumes all weights to be equal,
and nonzero entries in sparse matrix G to represent edges. Time

2-310

graphshortestpath

complexity is O(N+E), where N and E are the number of nodes and
edges respectively.

• 'Acyclic' — Assumes G to be a directed acyclic graph and that
weights of the edges are nonzero entries in sparse matrix G. Time
complexity is O(N+E), where N and E are the number of nodes and
edges respectively.

• 'Dijkstra' — Default algorithm. Assumes weights of the edges to be
positive values in sparse matrix G. Time complexity is O(log(N)*E),
where N and E are the number of nodes and edges respectively.

[...] = graphshortestpath(..., 'Weights', WeightsValue, ...)
lets you specify custom weights for the edges. WeightsValue is a
column vector having one entry for every nonzero value (edge) in
matrix G. The order of the custom weights in the vector must match
the order of the nonzero values in matrix G when it is traversed
column-wise. This property lets you use zero-valued weights. By
default, graphshortestpath gets weight information from the nonzero
entries in matrix G.

Examples Finding the Shortest Path in a Directed Graph

1 Create and view a directed graph with 6 nodes and 11 edges.

W = [.41 .99 .51 .32 .15 .45 .38 .32 .36 .29 .21];
DG = sparse([6 1 2 2 3 4 4 5 5 6 1],[2 6 3 5 4 1 6 3 4 3 5],W)

DG =

(4,1) 0.4500
(6,2) 0.4100
(2,3) 0.5100
(5,3) 0.3200
(6,3) 0.2900
(3,4) 0.1500
(5,4) 0.3600
(1,5) 0.2100

2-311

graphshortestpath

(2,5) 0.3200
(1,6) 0.9900
(4,6) 0.3800

h = view(biograph(DG,[],'ShowWeights','on'))
Biograph object with 6 nodes and 11 edges.

2 Find the shortest path in the graph from node 1 to node 6.

[dist,path,pred] = graphshortestpath(DG,1,6)

2-312

graphshortestpath

dist =

0.9500

path =

1 5 4 6

pred =

0 6 5 5 1 4

3 Mark the nodes and edges of the shortest path by coloring them red
and increasing the line width.

set(h.Nodes(path),'Color',[1 0.4 0.4])
edges = getedgesbynodeid(h,get(h.Nodes(path),'ID'));
set(edges,'LineColor',[1 0 0])
set(edges,'LineWidth',1.5)

2-313

graphshortestpath

Finding the Shortest Path in an Undirected Graph

1 Create and view an undirected graph with 6 nodes and 11 edges.

UG = tril(DG + DG')

UG =

(4,1) 0.4500
(5,1) 0.2100

2-314

graphshortestpath

(6,1) 0.9900
(3,2) 0.5100
(5,2) 0.3200
(6,2) 0.4100
(4,3) 0.1500
(5,3) 0.3200
(6,3) 0.2900
(5,4) 0.3600
(6,4) 0.3800

h = view(biograph(UG,[],'ShowArrows','off','ShowWeights','on'))
Biograph object with 6 nodes and 11 edges.

2-315

graphshortestpath

2 Find the shortest path in the graph from node 1 to node 6.

[dist,path,pred] = graphshortestpath(UG,1,6,'directed',false)

dist =

0.8200

path =

2-316

graphshortestpath

1 5 3 6

pred =

0 5 5 1 1 3

3 Mark the nodes and edges of the shortest path by coloring them red
and increasing the line width.

set(h.Nodes(path),'Color',[1 0.4 0.4])
fowEdges = getedgesbynodeid(h,get(h.Nodes(path),'ID'));
revEdges = getedgesbynodeid(h,get(h.Nodes(fliplr(path)),'ID'));
edges = [fowEdges;revEdges];
set(edges,'LineColor',[1 0 0])
set(edges,'LineWidth',1.5)

2-317

graphshortestpath

References [1] Dijkstra, E.W. (1959). A note on two problems in connexion with
graphs. Numerische Mathematik 1, 269-271.

[2] Bellman, R. (1958). On a Routing Problem. Quarterly of Applied
Mathematics 16(1), 87-90.

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

2-318

graphshortestpath

See Also Bioinformatics Toolbox functions: graphallshortestpaths,
graphconncomp, graphisdag, graphisomorphism, graphisspantree,
graphmaxflow, graphminspantree, graphpred2path, graphtopoorder,
graphtraverse

Bioinformatics Toolbox method of biograph object: shortestpath

2-319

graphtopoorder

Purpose Perform topological sort of directed acyclic graph

Syntax order = graphtopoorder(G)

Arguments
G N-by-N sparse matrix that represents a directed acyclic graph.

Nonzero entries in matrix G indicate the presence of an edge.

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

order = graphtopoorder(G) returns an index vector with the order of
the nodes sorted topologically. In topological order, an edge can exist
between a source node u and a destination node v, if and only if u
appears before v in the vector order. G is an N-by-N sparse matrix that
represents a directed acyclic graph (DAG). Nonzero entries in matrix G
indicate the presence of an edge.

Examples 1 Create and view a directed acyclic graph (DAG) with six nodes and
eight edges.

DG = sparse([6 6 6 2 2 3 5 1],[2 5 1 3 4 5 1 4],true,6,6)

DG =

(5,1) 1
(6,1) 1
(6,2) 1
(2,3) 1
(1,4) 1
(2,4) 1
(3,5) 1
(6,5) 1

2-320

graphtopoorder

view(biograph(DG))

2 Find the topological order of the DAG.

order = graphtopoorder(DG)

order =

6 2 3 5 1 4

3 Permute the nodes so that they appear ordered in the graph display.

2-321

graphtopoorder

DG = DG(order,order)

DG =

(1,2) 1
(2,3) 1
(1,4) 1
(3,4) 1
(1,5) 1
(4,5) 1
(2,6) 1
(5,6) 1

view(biograph(DG))

2-322

graphtopoorder

References [1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: graphallshortestpaths,
graphconncomp, graphisdag, graphisomorphism, graphisspantree,
graphmaxflow, graphminspantree, graphpred2path,
graphshortestpath, graphtraverse

Bioinformatics Toolbox method of biograph object: topoorder

2-323

graphtraverse

Purpose Traverse graph by following adjacent nodes

Syntax [disc, pred, closed] = graphtraverse(G, S)
[...] = graphtraverse(G, S, ...'Depth', DepthValue, ...)
[...] = graphtraverse(G, S, ...'Directed', DirectedValue, ...)
[...] = graphtraverse(G, S, ...'Method', MethodValue, ...)

Arguments
G N-by-N sparse matrix that represents a directed

graph. Nonzero entries in matrix G indicate the
presence of an edge.

S Integer that indicates the source node in graph G.

DepthValue Integer that indicates a node in graph G that
specifies the depth of the search. Default is Inf
(infinity).

DirectedValue Property that indicates whether graph G is directed
or undirected. Enter false for an undirected
graph. This results in the upper triangle of the
sparse matrix being ignored. Default is true.

MethodValue String that specifies the algorithm used to traverse
the graph. Choices are:
• 'BFS' — Breadth-first search. Time complexity

is O(N+E), where N and E are number of nodes
and edges respectively.

• 'DFS' — Default algorithm. Depth-first search.
Time complexity is O(N+E), where N and E are
number of nodes and edges respectively.

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

2-324

graphtraverse

[disc, pred, closed] = graphtraverse(G, S) traverses graph G
starting from the node indicated by integer S. G is an N-by-N sparse
matrix that represents a directed graph. Nonzero entries in matrix G
indicate the presence of an edge. disc is a vector of node indices in
the order in which they are discovered. pred is a vector of predecessor
node indices (listed in the order of the node indices) of the resulting
spanning tree. closed is a vector of node indices in the order in which
they are closed.

[...] = graphtraverse(G, S, ...'PropertyName',
PropertyValue, ...) calls graphtraverse with optional properties
that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed in
single quotes and is case insensitive. These property name/property
value pairs are as follows:

[...] = graphtraverse(G, S, ...'Depth', DepthValue, ...)
specifies the depth of the search. DepthValue is an integer indicating a
node in graph G. Default is Inf (infinity).

[...] = graphtraverse(G, S, ...'Directed', DirectedValue, ...)
indicates whether the graph is directed or undirected. Set
DirectedValue to false for an undirected graph. This results in the
upper triangle of the sparse matrix being ignored. Default is true.

[...] = graphtraverse(G, S, ...'Method', MethodValue, ...) lets
you specify the algorithm used to traverse the graph. Choices are:

• 'BFS' — Breadth-first search. Time complexity is O(N+E), where N
and E are number of nodes and edges respectively.

• 'DFS' — Default algorithm. Depth-first search. Time complexity is
O(N+E), where N and E are number of nodes and edges respectively.

Examples 1 Create a directed graph with 10 nodes and 12 edges.

DG = sparse([1 2 3 4 5 5 5 6 7 8 8 9],...
[2 4 1 5 3 6 7 9 8 1 10 2],true,10,10)

2-325

graphtraverse

DG =

(3,1) 1
(8,1) 1
(1,2) 1
(9,2) 1
(5,3) 1
(2,4) 1
(4,5) 1
(5,6) 1
(5,7) 1
(7,8) 1
(6,9) 1
(8,10) 1

h = view(biograph(DG))
Biograph object with 10 nodes and 12 edges.

2-326

graphtraverse

2 Traverse the graph to find the depth-first search (DFS) discovery
order starting at node 4.

order = graphtraverse(DG,4)

order =

4 5 3 1 2 6 9 7 8 10

2-327

graphtraverse

3 Label the nodes with the DFS discovery order.

for i = 1:10
h.Nodes(order(i)).Label =...

sprintf('%s:%d',h.Nodes(order(i)).ID,i);
end
h.ShowTextInNodes = 'label'
dolayout(h)

2-328

graphtraverse

4 Traverse the graph to find the breadth-first search (BFS) discovery
order starting at node 4.

order = graphtraverse(DG,4,'Method','BFS')

order =

4 5 3 6 7 1 9 8 2 10

5 Label the nodes with the BFS discovery order.

for i = 1:10
h.Nodes(order(i)).Label =...

sprintf('%s:%d',h.Nodes(order(i)).ID,i);
end
h.ShowTextInNodes = 'label'
dolayout(h)

2-329

graphtraverse

6 Find and color nodes that are close to (within two edges of) node 4.

node_idxs = graphtraverse(DG,4,'depth',2)

node_idxs =

4 5 3 6 7

set(h.nodes(node_idxs),'Color',[1 0 0])

2-330

graphtraverse

References [1] Sedgewick, R., (2002). Algorithms in C++, Part 5 Graph Algorithms
(Addison-Wesley).

[2] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

2-331

graphtraverse

See Also Bioinformatics Toolbox functions: graphallshortestpaths,
graphconncomp, graphisdag, graphisomorphism, graphisspantree,
graphmaxflow, graphminspantree, graphpred2path,
graphshortestpath, graphtopoorder

Bioinformatics Toolbox method of biograph object: traverse

2-332

hmmprofalign

Purpose Align query sequence to profile using hidden Markov model alignment

Syntax Alignment = hmmprofalign(Model,Seq)
[Alignment, Score] = hmmprofalign(Model,Seq)
[Score, Alignment, Prointer] = hmmprofalign(Model,Seq)
hmmprofalign(..., 'PropertyName', PropertyValue,...)
hmmprofalign(..., 'ShowScore', ShowScoreValue)
hmmprofalign(..., 'Flanks', FlanksValue)
hmmprofalign(..., 'ScoreFlanks', ScoreFlanksValue)
hmmprofalign(..., 'ScoreNullTransitions',

ScoreNullTransitionValue)

Arguments
Model Hidden Markov model created with the

function hmmprofstruct.

Seq Amino acid or nucleotide sequence. You
can also enter a structure with the field
Sequence.

ShowScoreValue Property to control displaying the scoring
space and the winning path. Enter either
true or false (default).

FlanksValue Property to control including the symbols
generated by the FLANKING INSERT states
in the output sequence. Enter either true or
false (default).

ScoreFlanksValue Property to control including the transition
probabilities for the flanking states in the
raw score. Enter either true or false
(default).

ScoreNullTransValue Property to control adjusting the raw
score using the null model for transitions
(Model.NullX). Enter either true or false
(default).

2-333

hmmprofalign

Description Alignment = hmmprofalign(Model,Seq) returns the score for the
optimal alignment of the query amino acid or nucleotide sequence (Seq)
to the profile hidden Markov model (Model). Scores are computed using
log-odd ratios for emission probabilities and log probabilities for state
transitions.

[Alignment, Score] = hmmprofalign(Model,Seq) returns a string
showing the optimal profile alignment.

Uppercase letters and dashes correspond to MATCH and DELETE
states respectively (the combined count is equal to the number of states
in the model). Lowercase letters are emitted by the INSERT states. For
more information about the HMM profile, see hmmprofstruct.

[Score, Alignment, Prointer] = hmmprofalign(Model,Seq)
returns a vector of the same length as the profile model with indices
pointing to the respective symbols of the query sequence. Null pointers
(NaN) mean that such states did not emit a symbol in the aligned
sequence because they represent model jumps from the BEGIN state
of a MATCH state, model jumps from the from a MATCH state to the
END state, or because the alignment passed through DELETE states.

hmmprofalign(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

hmmprofalign(..., 'ShowScore', ShowScoreValue), when
ShowScoreValue is true, displays the scoring space and the winning
path.

hmmprofalign(..., 'Flanks', FlanksValue), when FlanksValue
is true, includes the symbols generated by the FLANKING INSERT
states in the output sequence.

hmmprofalign(..., 'ScoreFlanks', ScoreFlanksValue), when
ScoreFlanksValue is true, includes the transition probabilities for the
flanking states in the raw score.

hmmprofalign(..., 'ScoreNullTransitions',
ScoreNullTransitionValue), when ScoreNullTransitionsValue
is true, adjusts the raw score using the null model for transitions
(Model.NullX).

2-334

hmmprofalign

Note Multiple target alignment is not supported in this
implementation. All the Model.LoopX probabilities are ignored.

Examples load('hmm_model_examples','model_7tm_2') % load a model example

load('hmm_model_examples','sequences') % load a sequence example

SCCR_RABIT=sequences(2).Sequence;

[a,s]=hmmprofalign(model_7tm_2,SCCR_RABIT,'showscore',true)

See Also Bioinformatics Toolbox functions gethmmprof, hmmprofestimate,
hmmprofgenerate, hmmprofgenerate, hmmprofstruct, pfamhmmread,
showhmmprof, multialign, profalign

2-335

hmmprofestimate

Purpose Estimate profile Hidden Markov Model (HMM) parameters using
pseudocounts

Syntax hmmprofestimate(Model, MultipleAlignment,
'PropertyName', PropertyValue...)

hmmprofestimate(..., 'A', AValue)
hmmprofestimate(..., 'Ax', AxValue)
hmmprofestimate(..., 'BE', BEValue)
hmmprofestimate(..., 'BDx', BDxValue)

Arguments
Model Hidden Markov model created with the

function hmmprofstruc.

MultipleAlignment Array of sequences. Sequences can also be a
structured array with the aligned sequences
in a field Aligned or Sequences, and the
optional names in a field Header or Name.

A Property to set the pseudocount weight A.
Default value is 20.

Ax Property to set the pseudocount weight Ax.
Default value is 20.

BE Property to set the background symbol
emission probabilities. Default values are
taken from Model.NullEmission.

BMx Property to set the background transition
probabilities from any MATCH state ([M->M
M->I M->D]). Default values are taken from
hmmprofstruct.

BDx Property to set the background transition
probabilities from any DELETE state
([D->M D->D]). Default values are taken from
hmmprofstruct.

2-336

hmmprofestimate

Description hmmprofestimate(Model, MultipleAlignment, 'PropertyName',
PropertyValue...) returns a structure with the fields containing the
updated estimated parameters of a profile HMM. Symbol emission and
state transition probabilities are estimated using the real counts and
weighted pseudocounts obtained with the background probabilities.
Default weight is A=20, the default background symbol emission for
match and insert states is taken from Model.NullEmission, and the
default background transition probabilities are the same as default
transition probabilities returned by hmmprofstruct.

Model Construction: Multiple aligned sequences should contain
uppercase letters and dashes indicating the model MATCH and
DELETE states agreeing with Model.ModelLength. If model state
annotation is missing, but MultipleAlignment is space aligned, then a
"maximum entropy" criteria is used to select Model.ModelLength states.

Note Insert and flank insert transition probabilities are not estimated,
but can be modified afterwards using hmmprofstruct.

hmmprofestimate(..., 'A', AValue) sets the pseudocount weight A
= Avalue when estimating the symbol emission probabilities. Default
value is 20.

hmmprofestimate(...,'Ax', AxValue) sets the pseudocount weight
Ax = Axvalue when estimating the transition probabilities. Default
value is 20.

hmmprofestimate(...,'BE', BEValue) sets the background
symbol emission probabilities. Default values are taken from
Model.NullEmission.

hmmprofestimate(...,'BMx', BMxValue) sets the background
transition probabilities from any MATCH state ([M->M M->I M->D]).
Default values are taken from hmmprofstruct.

2-337

hmmprofestimate

hmmprofestimate(..., 'BDx', BDxValue) sets the background
transition probabilities from any DELETE state ([D->M D->D]). Default
values are taken from hmmprofstruct.

See Also Bioinformatics Toolbox functions hmmprofalign, hmmprofstruct,
showhmmprof

2-338

hmmprofgenerate

Purpose Generate random sequence drawn from profile Hidden Markov Model
(HMM)

Syntax Sequence = hmmprofgenerate(Model)
[Sequence, Profptr] = hmmprofgenerate(Model)
... = hmmprofgenerate(Model, ...'Align', AlignValue, ...)
... = hmmprofgenerate(Model, ...'Flanks', FlanksValue, ...)
... = hmmprofgenerate(Model, ...'Signature', SignatureValue,

...)

Arguments
Model Hidden Markov model created with the

hmmprofstruct function.

AlignValue Property to control using uppercase letters
for matches and lowercase letters for inserted
letters. Enter either true or false. Default
is false.

FlanksValue Property to control including the symbols
generated by the FLANKING INSERT states
in the output sequence. Enter either true or
false. Default is false.

SignatureValue Property to control returning the most likely
path and symbols. Enter either true or false.
Default is false.

Description Sequence = hmmprofgenerate(Model) returns the string Sequence
showing a sequence of amino acids or nucleotides drawn from the
profile Model. The length, alphabet, and probabilities of the Model are
stored in a structure. For move information about this structure, see
hmmprofstruct.

[Sequence, Profptr] = hmmprofgenerate(Model) returns a vector of the
same length as the profile model pointing to the respective states in the
output sequence. Null pointers (0) mean that such states do not exist in
the output sequence, either because they are never touched (i.e., jumps

2-339

hmmprofgenerate

from the BEGIN state to MATCH states or from MATCH states to the
END state), or because DELETE states are not in the output sequence
(not aligned output; see below).

... = hmmprofgenerate(Model, ...'PropertyName',
PropertyValue, ...) calls hmmprofgenerate with optional properties
that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed in
single quotes and is case insensitive. These property name/property
value pairs are as follows:

... = hmmprofgenerate(Model, ...'Align', AlignValue, ...) if
Align is true, the output sequence is aligned to the model as follows:
uppercase letters and dashes correspond to MATCH and DELETE
states respectively (the combined count is equal to the number of
states in the model). Lowercase letters are emitted by the INSERT or
FLANKING INSERT states. If AlignValue is false, the output is a
sequence of uppercase symbols. The default value is true.

... = hmmprofgenerate(Model, ...'Flanks', FlanksValue, ...) if
Flanks is true, the output sequence includes the symbols generated by
the FLANKING INSERT states. The default value is false.

... = hmmprofgenerate(Model, ...'Signature',
SignatureValue, ...) if SignatureValue is true, returns the most
likely path and symbols. The default value is false.

Examples load('hmm_model_examples','model_7tm_2') % load a model example
rand_sequence = hmmprofgenerate(model_7tm_2)

See Also Bioinformatics Toolbox functions: hmmprofalign, hmmprofstruct,
showhmmprof

2-340

hmmprofmerge

Purpose Concatenate prealigned strings of several sequences to profile Hidden
Markow Model (HMM)

Syntax hmmprofmerge(Sequences)
hmmprofmerge(Sequences, Names)
hmmprofmerge(Sequences, Names, Scores)

Arguments
Sequences Array of sequences. Sequences can also be a

structured array with the aligned sequences in a field
Aligned or Sequences, and the optional names in a
field Header or Name.

Names Names for the sequences. Enter a vector of names.

Scores Pairwise alignment scores from the function
hmmprofalign. Enter a vector of values with the same
length as the number of sequences in Sequences.

Description hmmprofmerge(Sequences) displays a set of prealigned sequences to a
HMM model profile. The output is aligned corresponding to the HMM
states.

• Match states — Uppercase letters

• Insert states — Lowercase letters or asterisks (*)

• Delete states — Dashes

Periods (.) are added at positions corresponding to inserts in other
sequences. The input sequences must have the same number of profile
states, that is, the joint count of capital letters and dashes must be
the same.

hmmprofmerge(Sequences, Names) labels the sequences with Names.

hmmprofmerge(Sequences, Names, Scores) sorts the displayed
sequences using Scores.

2-341

hmmprofmerge

Examples load('hmm_model_examples','model_7tm_2') %load model
load('hmm_model_examples','sequences') %load sequences

for ind =1:length(sequences)
[scores(ind),sequences(ind).Aligned] =...

hmmprofalign(model_7tm_2,sequences(ind).Sequence);
end

hmmprofmerge(sequences, scores)

See Also Bioinformatics Toolbox functions: hmmprofalign, hmmprofstruct

2-342

hmmprofstruct

Purpose Create profile Hidden Markov Model (HMM) structure

Syntax Model = hmmprofstruct(Length)
Model = hmmprofstruct(Length, 'Field1', FieldValues1,...)
hmmprofstruct(Model, 'Field1', Field1Values1,...)

Arguments Length Number of match states in the model.

Model Hidden Markov model created with the function
hmmprofstruct.

Field1 Field name in the structure Model. Enter a name
from the table below.

Description Model = hmmprofstruct(Length) returns a structure with the fields
containing the required parameters of a profile HMM. Length specifies
the number of match states in the model. All other mandatory model
parameters are initialized to the default values.

Model = hmmprofstruct(Length, 'Field1', FieldValues1, ...)
creates a profile HMM using the specified fields and parameters. All
other mandatory model parameters are initialized to default values.

hmmprofstruct(Model, 'Field1', Field1Values1, ...) returns
the updated profile HMM with the specified fields and parameters.
All other mandatory model parameters are taken from the reference
MODEL.

HMM Profile Structure Format

Model parameters fields (mandatory). All probability values are in the
[0 1] range.

Field Name Description

ModelLength Length of the profile (number of MATCH states)

Alphabet 'AA' or 'NT'. Default is 'AA'.

2-343

hmmprofstruct

Field Name Description

MatchEmission Symbol emission probabilities in the MATCH
states.

Size is [ModelLength x AlphaLength]. Defaults to
uniform distributions. May accept a structure with
residue counts (see aacount or basecount).

InsertEmission Symbol emission probabilities in the INSERT
state.

Size is [ModelLength x AlphaLength]. Defaults to
uniform distributions. May accept a structure with
residue counts (see aacount or basecount).

NullEmission Symbol emission probabilities in the MATCH and
INSERT states for the NULL model. NULL model,
size is [1 x AlphaLength]. Defaults to a uniform
distribution. May accept a structure with residue
counts (see aacount or basecount). The NULL
model is used to compute the log-odds ratio at
every state and avoid overflow when propagating
the probabilities through the model.

BeginX BEGIN state transition probabilities.

Format is

[B->D1 B->M1 B->M2 B->M3 B->Mend]

Notes:

sum(S.BeginX) = 1

For fragment profiles

sum(S.BeginX(3:end)) = 0

Default is [0.01 0.99 0 0 ... 0].

2-344

hmmprofstruct

Field Name Description

MatchX MATCH state transition probabilities

Format is

[M1->M2 M2->M3 ... M[end-1]->Mend;
M1->I1 M2->I2 ... M[end-1]->I[end-1];
M1->D2 M2->D3 ... M[end-1]->Dend;
M1->E M2->E ... M[end-1]->E]

Notes:

sum(S.MatchX) = [1 1 ... 1]

For fragment profiles

sum(S.MatchX(4,:)) = 0

Default is repmat([0.998 0.001 0.001
0],profLength-1,1).

InsertX INSERT state transition probabilities

Format is

[I1->M2 I2->M3 ... I[end-1]->Mend;
[I1->I1 I2->I2 ... I[end-1]->I[end-1]]

Note:

sum(S.InsertX) = [1 1 ... 1]

Default is repmat([0.5 0.5],profLength-1,1).

2-345

hmmprofstruct

Field Name Description

DeleteX DELETE state transition probabilities. The format
is

[D1->M2 D2->M3 ... D[end-1]->Mend ;
[D1->D2 D2->D3 ... D[end-1]->Dend]

Note sum(S.DeleteX) = [1 1 ... 1]

Default is repmat([0.5 0.5],profLength-1,1).

FlankingInsertX Flanking insert states (N and C) used for LOCAL
profile alignment. The format is

[N->B C->T ;
[N->N C->C]

Note sum(S.FlankingInsertsX) = [1 1]

To force global alignment use

S.FlankingInsertsX = [1 1; 0 0]

Default is [0.01 0.01; 0.99 0.99].

2-346

hmmprofstruct

Field Name Description

LoopX Loop states transition probabilities used for
multiple hits alignment. The format is

[E->C J->B ;
E->J J->J]

Note sum(S.LoopX) = [1 1]

Default is [0.5 0.01; 0.5 0.99]

NullX Null transition probabilities used to provide scores
with log-odds values also for state transitions. The
format is

[G->F ; G->G]

Note sum(S.NullX) = 1

Default is [0.01; 0.99]

Annotation Fields (Optional)

Name Model Name

IDNumber Identification Number

Description Short description of the model

A profile Markov model is a common statistical tool for modeling
structured sequences composed of symbols . These symbols include
randomness in both the output (emission of symbols) and the state

2-347

hmmprofstruct

transitions of the process. Markov models are generally represented
by state diagrams.

The figure shown below is a state diagram for a HMM profile of length 4.
Insert, match, and delete states are in the regular part (middle section).

• Match state means that the target sequence is aligned to the profile
at the specific location.

• Delete state represents a gap or symbol absence in the target
sequence (also know as a silent state because it does not emit any
symbol).

• Insert state represents the excess of one or more symbols in the
target sequence that are not included in the profile.

Flanking states (S, N, B, E, C, T) are used for proper modeling of the
ends of the sequence, either for global, local or fragment alignment of
the profile. S, N, E, and T are silent while N and C are used to insert
symbols at the flanks.

Examples hmmprofstruct(100,'Alphabet','AA')

See Also Bioinformatics Toolbox functions: aacount, basecount, gethmmprof,
hmmprofalign, hmmprofestimate, hmmprofgenerate, hmmprofmerge,
pfamhmmread, showhmmprof

2-348

imageneread

Purpose Read microarray data from ImaGene Results file

Syntax imagenedata = imageneread('File')
imagenedata = imageneread(..., 'CleanColNames',
CleanColNamesValue, ...)

Arguments
File ImaGene Results formatted file. Enter a file

name or a path and file name.

CleanColNameValue Property to control creating column names that
MATLAB can use as variable names.

Description imagenedata = imageneread('File') reads ImaGene results data
from File and creates a MATLAB structure imagedata containing the
following fields:

Field

HeaderAA

Data

Blocks

Rows

Columns

Fields

IDs

ColumnNames

2-349

imageneread

Field

Indices

Shape

imagenedata = imageneread(..., 'PropertyName',
PropertyValue, ...) defines optional properties using property
name/value pairs, described as follows:

imagenedata = imageneread(..., 'CleanColNames',
CleanColNamesValue, ...). An ImaGene file may contain column
names with spaces and some characters that MATLAB cannot use in
MATLAB variable names. If CleanColNamesValue is true, imagene
returns, in the field ColumnNames, names that are valid MATLAB
variable names and names that you can use in functions. By default,
CleanColNamesValue is false and the field ColumnNames may contain
characters that are not valid for MATLAB variable names.

The field Indices of the structure contains MATLAB indices that you
can use for plotting heat maps of the data with the function image or
imagesc.

For more details on the ImaGene format and example data, see the
ImaGene User Manual.

ImaGene is a registered trademark of BioDiscovery, Inc.

Examples 1 Read in a sample ImaGene Results file. Note, the file cy3.txt is not
provided with Bioinformatics Toolbox.

cy3Data = imageneread('cy3.txt');

2 Plot the signal mean.

maimage(cy3Data,'Signal Mean');

3 Read in a sample ImaGene Results file. Note, the file cy5.txt is not
provided with Bioinformatics Toolbox.

cy5Data = imageneread('cy5.txt');

2-350

imageneread

4 Create a loglog plot of the signal median from two ImaGene Results
files.

sigMedianCol = find(strcmp('Signal Median',cy3Data.ColumnNames));

cy3Median = cy3Data.Data(:,sigMedianCol);

cy5Median = cy5Data.Data(:,sigMedianCol);

maloglog(cy3Median,cy5Median,'title','Signal Median');

See Also Bioinformatics Toolbox functions: gprread, maboxplot, maimage,
sptread

2-351

int2aa

Purpose Convert amino acid sequence from integer to letter representation

Syntax SeqChar = int2aa(SeqInt)
SeqChar = int2aa(SeqInt, 'Case', CaseValue)

Arguments SeqInt Row vector of integers specifying an amino acid
sequence. See the table Mapping Amino Acid Integers
to Letters on page 2-352 for valid integers. Integers are
arbitrarily assigned to IUB/IUPAC letters.

CaseValue String that specifies the case of the returned character
string. Choices are 'upper' (default) or 'lower'.

Return
Values

SeqChar Character string of single-letter codes specifying an
amino acid sequence.

Mapping Amino Acid Integers to Letters

Amino Acid Integer Code

Alanine 1 A

Arginine 2 R

Asparagine 3 N

Aspartic acid (Aspartate) 4 D

Cysteine 5 C

Glutamine 6 Q

Glutamic acid (Glutamate) 7 E

Glycine 8 G

2-352

int2aa

Amino Acid Integer Code

Histidine 9 H

Isoleucine 10 I

Leucine 11 L

Lysine 12 K

Methionine 13 M

Phenylalanine 14 F

Proline 15 P

Serine 16 S

Threonine 17 T

Tryptophan 18 W

Tyrosine 19 Y

Valine 20 V

Asparagine or Aspartic acid (Aspartate) 21 B

Glutamine or Glutamic acid (Glutamate) 22 Z

Any amino acid 23 X

Translation stop 24 *

Gap of indeterminate length 25 -

Unknown or any integer not in table 0 ?

Description SeqChar = int2aa(SeqInt) converts a 1-by-N array of integers
specifying an amino acid sequence to a character string of single-letter
codes specifying the same amino acid sequence. See the table Mapping
Amino Acid Integers to Letters on page 2-352 for valid integers.

SeqChar = int2aa(SeqInt, 'Case', CaseValue) specifies the case
of the returned character string representing an amino acid sequence.
Choices are 'upper' (default) or 'lower'.

2-353

int2aa

Examples Convert an amino acid sequence from integer to letter representation.

s = int2aa([13 1 17 11 1 21])

s =

MATLAB

See Also Bioinformatics Toolbox functions: aa2int, aminolookup, int2nt,
nt2int

2-354

int2nt

Purpose Convert nucleotide sequence from integer to letter representation

Syntax int2nt(SeqNT)
int2nt(..., 'PropertyName', PropertyValue,...)
int2nt(..., 'Alphabet', AlphabetValue)
int2nt(..., 'Unknown', UnknownValue)
int2nt(..., 'Case', CaseValue)

Arguments
SeqNT Nucleotide sequence represented by integers.

Enter a vector of integers from the table
Mapping Nucleotide Integers to Letters below.
The array does not have to be of type integer,
but it does have to contain only integer
numbers. Integers are arbitrarily assigned to
IUB/IUPAC letters.

AlphabetValue Property to select the nucleotide alphabet.
Enter either 'DNA' or 'RNA'.

UnknownValue Property to select the integer value for the
unknown character. Enter a character to
map integers 16 or greater to an unknown
character. The character must not be one
of the nucleotide characters A, T, C, G or the
ambiguous nucleotide characters N, R, Y, K, M, S,
W, B, D, H, or V. The default character is *.

CaseValue Property to select the letter case for the
nucleotide sequence. Enter either 'upper'
(default) or 'lower' .

2-355

int2nt

Mapping Nucleotide Integers to Letters

Base Code Base Code Base Code

Adenosine 1—A T, C
(pyrimidine)

6—Y A, T, G (not
C)

12—D

Cytidine 2—C G, T (keto) 7—K A, T, C (not
G)

13—H

Guanine 3—G A, C (amino) 8—M A, G, C (not
T)

14—V

Thymidine 4—T G, C (strong) 9—S A, T, G, C (any) 15—N

Uridine (if
’Alphabet’ =
’RNA’

4—U A, T (weak) 10—W Gap of
indeterminate
length

16 — -

A, G
(purine)

5—R T, G, C (not
A)

11—B Unknown
(default)

0 and
≥17—*

Description int2nt(SeqNT) converts a 1-by-N array of integers to a character string
using the table Mapping Nucleotide Letters to Integers above.

int2nt(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

int2nt(..., 'Alphabet', AlphabetValue) selects the nucleotide
alphabet to use. The default value is 'DNA', which uses the symbols A,
T, C, and G. If AlphabetValue is set to 'RNA', int2nt uses the symbols
A, C, U, G instead.

int2nt(..., 'Unknown', UnknownValue) specifies the character to
represent an unknown nucleotide base.

int2nt(..., 'Case', CaseValue) selects the output case of the
nucleotide string.

Examples Enter a sequence of integers as a MATLAB vector (space or
comma-separated list with square brackets).

2-356

int2nt

s = int2nt([1 2 4 3 2 4 1 3 2])

s =
ACTGCTAGC

Define a symbol for unknown numbers 16 and greater.

si = [1 2 4 20 2 4 40 3 2];
s = int2nt(si, 'unknown', '#')

s =
ACT#CT#GC

See Also Bioinformatics Toolbox function aa2int, int2aa, nt2int

2-357

isoelectric

Purpose Estimate isoelectric point for amino acid sequence

Syntax pI = isoelectric(SeqAA)
[pI Charge] = isoelectric(SeqAA)
isoelectric(..., 'PropertyName', PropertyValue,...)
isoelectric(..., 'PKVals', PKValsValue)
isoelectric(..., 'Charge', ChargeValue)
isoelectric(..., 'Chart', ChartValue)

Arguments
SeqAA Amino acid sequence. Enter a character string or a

vector of integers from the table. Examples: 'ARN'
or [1 2 3].

PKValsValue Property to provide alternative pK values.

ChargeValue Property to select a specific pH for estimating charge.
Enter a number between 0 and 14. The default value
is 7.2.

ChartValue Property to control plotting a graph of charge versus
pH. Enter true or false.

Description pI = isoelectric(SeqAA) returns the estimated isoelectric point (pI)
for an amino acid sequence. The isoelectric point is the pH at which the
protein has a net charge of zero

[pI Charge] = isoelectric(SeqAA) returns the estimated isoelectric
point (pI) for an amino acid sequence and the estimated charge for a
given pH (default is typical intracellular pH 7.2).

The estimates are skewed by the underlying assumptions that all amino
acids are fully exposed to the solvent, that neighboring peptides have no
influence on the pK of any given amino acid, and that the constitutive
amino acids, as well as the N- and C-termini, are unmodified. Cysteine

2-358

isoelectric

residues participating in disulfide bridges also affect the true pI and are
not considered here. By default, isoelectric uses the EMBOSS amino
acid pK table, or you can substitute other values using the property
PKVals.

• If the sequence contains ambiguous amino acid characters (b z * –),
isoelectric ignores the characters and displays a warning message.

Warning: Symbols other than the standard 20 amino acids
appear in the sequence.

• If the sequence contains undefined amino acid characters (i j o) ,
isoelectric ignores the characters and displays a warning message.

Warning: Sequence contains unknown characters. These will
be ignored.

isoelectric(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

isoelectric(..., 'PKVals', PKValsValue) uses the alternative
pK table stored in the text file PKValValues. For an example of a pK
text file, see the file Emboss.pK.

N_term 8.6
K 10.8
R 12.5
H 6.5
D 3.9
E 4.1
C 8.5
Y 10.1
C_term 3.6

isoelectric(..., 'Charge', ChargeValue) returns the estimated
charge of a sequence for a given pH (ChargeValue).

2-359

isoelectric

isoelectric(..., 'Chart', ChartValue) when ChartValue is true,
returns a graph plotting the charge of the protein versus the pH of the
solvent.

Example % Get a sequence from PDB.
pdbSeq = getpdb('1CIV', 'SequenceOnly', true)
% Estimate its isoelectric point.
isoelectric(pdbSeq)

% Plot the charge against the pH for a short polypeptide sequence.
isoelectric('PQGGGGWGQPHGGGWGQPHGGGGWGQGGSHSQG', 'CHART', true)

% Get the Rh blood group D antigen from NCBI and calculate
% its charge at pH 7.3 (typical blood pH).
gpSeq = getgenpept('AAB39602')
[pI Charge] = isoelectric(gpSeq, 'Charge', 7.38)

See Also Bioinformatics functions aacount, molweight

2-360

jcampread

Purpose Read JCAMP-DX formatted files

Syntax JCAMPData = jcampread(File)

Arguments
File JCAMP-DX formatted file (ASCII text file). Enter a

file name, a path and file name, or a URL pointing to a
file. File can also be a MATLAB character array that
contains the text of a JCAMP-DX formatted file.

Description JCAMP-DX is a file format for infrared, NMR, and mass spectrometry
data from the Joint Committee on Atomic and Molecular Physical Data
(JCAMP). jcampread supports reading data from files saved with
Versions 4.24 and 5 of the JCAMP-DX format. For more details, see

http://www.jcamp.org/index.html

JCAMPData = jcampread(File)reads data from a JCAMP-DX
formatted file (File) and creates a MATLAB structure (JCAMPData)
containing the following fields:

Field

Title

DataType

Origin

Owner

Blocks

Notes

The Blocks field of the structure is an array of structures corresponding
to each set of data in the file. These structures have the following fields:

2-361

http://www.jcamp.org/index.html

jcampread

Field

XData

YData

XUnits

YUnits

Notes

Examples 1 Download test data in the file isa_ms1.dx from

http://www.jcamp.org/testdata.html/testdata.zip

2 Read a JCAMP-DX file (isas_ms1.dx) into MATLAB and plot the
mass spectrum.

jcampStruct = jcampread('isas_ms1.dx')
data = jcampStruct.Blocks(1);
stem(data.XData,data.YData, '.', 'MarkerEdgeColor','w');
title(jcampStruct.Title);
xlabel(data.XUnits);
ylabel(data.YUnits);

A figure window opens with the mass spectrum.

2-362

jcampread

See Also Bioinformatics Toolbox functions: mslowess, mssgolay, msviewer,
mzxmlread

2-363

joinseq

Purpose Join two sequences to produce shortest supersequence

Syntax SeqNT3 = joinseq(SeqNT1, SeqNT2)

Arguments
SeqNT1, SeqNT2 Nucleotide sequences.

Description SeqNT3 = joinseq(SeqNT1, SeqNT2) creates a new sequence that
is the shortest supersequence of SeqNT1 and SeqNT2. If there is no
overlap between the sequences, then SeqNT2 is concatenated to the end
of SeqNT1. If the length of the overlap is the same at both ends of the
sequence, then the overlap at the end of SeqNT1 and the start of SeqNT2
is used to join the sequences.

If SeqNT1 is a subsequence of SeqNT2, then SeqNT2 is returned as the
shortest supersequence and vice versa.

Examples seq1 = 'ACGTAAA';
seq2 = 'AAATGCA';
joined = joinseq(seq1,seq2)

joined =
ACGTAAATGCA

See Also MATLAB functions cat, strcat, strfind

2-364

knnclassify

Purpose Classify data using nearest neighbor method

Syntax Class = knnclassify(Sample, Training, Group)
Class = knnclassify(Sample, Training, Group, k)
Class = knnclassify(Sample, Training, Group, k, distance)
Class = knnclassify(Sample, Training, Group, k, distance,

rule)

Arguments
Sample Matrix whose rows will be classified into groups. Sample

must have the same number of columns as Training.

Training Matrix used to group the rows in the matrix Sample.
Training must have the same number of columns as
Sample. Each row of Training belongs to the group
whose value is the corresponding entry of Group.

Group Vector whose distinct values define the grouping of the
rows in Training.

k The number of nearest neighbors used in the
classification. Default is 1.

2-365

knnclassify

distance String to specify the distance metric. Choices are:
• 'euclidean' — Euclidean distance (default)

• 'cityblock' — Sum of absolute differences

• 'cosine' — One minus the cosine of the included
angle between points (treated as vectors)

• 'correlation' — One minus the sample correlation
between points (treated as sequences of values)

• 'hamming' — Percentage of bits that differ (only
suitable for binary data)

rule String to specify the rule used to decide how to classify
the sample. Choices are:
• 'nearest' — Majority rule with nearest point

tie-break (default)

• 'random' — Majority rule with random point
tie-break

• 'consensus' — Consensus rule

Description Class = knnclassify(Sample, Training, Group) classifies the rows
of the data matrix Sample into groups, based on the grouping of the rows
of Training. Sample and Training must be matrices with the same
number of columns. Group is a vector whose distinct values define the
grouping of the rows in Training. Each row of Training belongs to the
group whose value is the corresponding entry of Group. knnclassify
assigns each row of Sample to the group for the closest row of Training.
Group can be a numeric vector, a string array, or a cell array of strings.
Training and Group must have the same number of rows. knnclassify
treats NaNs or empty strings in Group as missing values, and ignores
the corresponding rows of Training. Class indicates which group each
row of Sample has been assigned to, and is of the same type as Group.

Class = knnclassify(Sample, Training, Group, k) enables you to
specify k, the number of nearest neighbors used in the classification.
Default is 1.

2-366

knnclassify

Class = knnclassify(Sample, Training, Group, k, distance)
enables you to specify the distance metric. Choices for distance are:

'euclidean' Euclidean distance (default)

'cityblock' Sum of absolute differences

'cosine' One minus the cosine of the included angle between
points (treated as vectors)

'correlation' One minus the sample correlation between points
(treated as sequences of values)

'hamming' Percentage of bits that differ (only suitable for binary
data)

Class = knnclassify(Sample, Training, Group, k,
distance, rule) enables you to specify the rule used to decide how to
classify the sample. Choices for rule are:

'nearest' Majority rule with nearest point tie-break (default)

'random' Majority rule with random point tie-break

'consensus' Consensus rule

The default behavior is to use majority rule. That is, a sample point is
assigned to the class the majority of the k nearest neighbors are from.
Use 'consensus' to require a consensus, as opposed to majority rule.
When using the 'consensus' option, points where not all of the k
nearest neighbors are from the same class are not assigned to one of the
classes. Instead the output Class for these points is NaN for numerical
groups or '' for string named groups. When classifying to more than
two groups or when using an even value for k, it might be necessary to
break a tie in the number of nearest neighbors. Options are 'random',
which selects a random tiebreaker, and 'nearest', which uses the
nearest neighbor among the tied groups to break the tie. The default
behavior is majority rule, with nearest tie-break.

2-367

knnclassify

Examples Classifying Rows

The following example classifies the rows of the matrix sample:

sample = [.9 .8;.1 .3;.2 .6]

sample =
0.9000 0.8000
0.1000 0.3000
0.2000 0.6000

training=[0 0;.5 .5;1 1]

training =
0 0

0.5000 0.5000
1.0000 1.0000

group = [1;2;3]

group =
1
2
3

class = knnclassify(sample, training, group)

class =
3
1
2

Row 1 of sample is closest to row 3 of Training, so class(1) = 3. Row
2 of sample is closest to row 1 of Training, so class(2) = 1. Row 3 of
sample is closest to row 2 of Training, so class(3) = 2.

2-368

knnclassify

Classifying Rows into One of Two Groups

The following example classifies each row of the data in sample into one
of the two groups in training. The following commands create the
matrix training and the grouping variable group, and plot the rows of
training in two groups.

training = [mvnrnd([1 1], eye(2), 100); ...
mvnrnd([-1 -1], 2*eye(2), 100)];

group = [repmat(1,100,1); repmat(2,100,1)];
gscatter(training(:,1),training(:,2),group,'rb','+x');
legend('Training group 1', 'Training group 2');
hold on;

−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4
Training group 1
Training group 2

The following commands create the matrix sample, classify its rows into
two groups, and plot the result.

2-369

knnclassify

sample = unifrnd(-5, 5, 100, 2);
% Classify the sample using the nearest neighbor classification
c = knnclassify(sample, training, group);
gscatter(sample(:,1),sample(:,2),c,'mc'); hold on;
legend('Training group 1','Training group 2', ...

'Data in group 1','Data in group 2');
hold off;

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
Training group 1
Training group 2
Data in group 1
Data in group 2

Classifying Rows Using the Three Nearest Neighbors

The following example uses the same data as in Example 2, but classifies
the rows of sample using three nearest neighbors instead of one.

gscatter(training(:,1),training(:,2),group,'rb',+x');

hold on;

c3 = knnclassify(sample, training, group, 3);

2-370

knnclassify

gscatter(sample(:,1),sample(:,2),c3,'mc','o');

legend('Training group 1','Training group 2','Data in group 1','Data in group 2');

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
Training group 1
Training group 2
Data in group 1
Data in group 2

If you compare this plot with the one in Example 2, you see that some of
the data points are classified differently using three nearest neighbors.

References [1] Mitchell T (1997), Machine Learning, McGraw-Hill.

See Also Bioinformatics Toolbox functions: knnimpute, classperf, crossvalind,
svmclassify, svmtrain

Statistics Toolbox functions: classify

2-371

knnimpute

Purpose Impute missing data using nearest-neighbor method

Syntax knnimpute(Data)
knnimpute(Data, k)
knnimpute(..., 'PropertyName', PropertyValue,...)
knnimpute(..., 'Distance', DistanceValue)
knnimpute(..., 'DistArgs', DistArgsValue)
knnimpute(..., 'Weights', WeightsValues)
knnimpute(..., 'Median', MedianValue)

Arguments
Data

k

Description knnimpute(Data)replaces NaNs in Data with the corresponding value
from the nearest-neighbor column. The nearest-neighbor column is
the closest column in Euclidean distance. If the corresponding value
from the nearest-neighbor column is also NaN, the next nearest column
is used.

knnimpute(Data, k)replaces NaNs in Data with a weighted mean of the
k nearest-neighbor columns. The weights are inversely proportional to
the distances from the neighboring columns.

knnimpute(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

knnimpute(..., 'Distance', DistanceValue) computes
nearest-neighbor columns using the distance metric distfun. The
choices for DistanceValue are

'euclidean' Euclidean distance (default).

'seuclidean' Standardized Euclidean distance — each coordinate
in the sum of squares is inversely weighted by the
sample variance of that coordinate.

2-372

knnimpute

'cityblock' City block distance

'mahalanobis'Mahalanobis distance

'minkowski' Minkowski distance with exponent 2

'cosine' One minus the cosine of the included angle

'correlation'One minus the sample correlation between
observations, treated as sequences of values

'hamming' Hamming distance — the percentage of coordinates
that differ

'jaccard' One minus the Jaccard coefficient — the percentage
of nonzero coordinates that differ

'chebychev' Chebychev distance (maximum coordinate difference)

function
handle

A handle to a distance function, specified using @, for
example @distfun

See pdist for more details.

knnimpute(..., 'DistArgs', DistArgsValue) passes arguments
(DistArgsValue) to the function distfun. DistArgsValue can be a
single value or a cell array of values.

knnimpute(..., 'Weights', WeightsValues) enables you to specify
the weights used in the weighted mean calculation. w should be a vector
of length k.

knnimpute(..., 'Median', MedianValue) when MedianValue is
true, uses the median of the k nearest neighbors instead of the
weighted mean.

Example 1 A = [1 2 5;4 5 7;NaN -1 8;7 6 0]

A =

1 2 5
4 5 7

2-373

knnimpute

NaN -1 8
7 6 0

Note that A(3,1) = NaN. Because column 2 is the closest column to
column 1 in Euclidean distance, knnimpute imputes the (3,1) entry of
column 1 to be the corresponding entry of column 2, which is -1.

knnimpute(A)

ans =

1 2 5
4 5 7

-1 -1 8
7 6 0

Example 2 The following example loads the data set yeastdata and imputes
missing values in the array yeastvalues.

load yeastdata
% Remove data for empty spots
emptySpots = strcmp('EMPTY',genes);
yeastvalues(emptySpots,:) = [];
genes(emptySpots) = [];
% Impute missing values
imputedValues = knnimpute(yeastvalues);

References [1] Speed T (2003), Statistical Analysis of Gene Expression Microarray
Data, Chapman & Hall/CRC.

[2] Hastie T, Tibshirani R, Sherlock G. Eisen M, Brown P, Botstein D
(1999), “Imputing missing data for gene expression arrays”, Technical
Report, Division of Biostatistics, Stanford University.

[3] Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani
R, Botstein D, Altman R (2001), “Missing value estimation methods for
DNA microarrays”, Bioinformatics, 17(6)520-525.

2-374

knnimpute

See Also Bioinformatics Toolbox function knnclassify

MATLAB function isnan

Statistics Toolbox functions nanmean, nanmedian, pdist

2-375

maboxplot

Purpose Box plot for microarray data

Syntax maboxplot(MAData)
maboxplot(MAData, ColumnName)
maboxplot(MAStruct, FieldName)
H = maboxplot(...)
[H, HLines] = maboxplot(...)
maboxplot(..., 'PropertyName', PropertyValue, ...)
maboxplot(..., 'Title', TitleValue, ...)
maboxplot(..., 'Notch', NotchValue, ...)
maboxplot(..., 'Symbol', SymbolValue, ...)
maboxplot(..., 'Orientation', OrientationValue, ...)
maboxplot(..., 'WhiskerLength', WhiskerLengthValue, ...)

Arguments
MAData A numeric array or a structure containing a

field called Data. The values in the columns
of MAData will be used to create box plots.

ColumnName An array of column names corresponding to
the data in MAData.

MAStruct A microarray data structure.

FieldName A field within the microarray data structure,
MAStruct. The values in the field FieldName
will be used to create box plots.

TitleValue A string to use as the title for the plot. The
default title is FieldName.

NotchValue Property to control the type of boxes drawn.
Enter either true for notched boxes, or
false, for square boxes. Default is false.

2-376

maboxplot

OrientationValue Property to specify the orientation of the box
plot. Enter 'Vertical' or 'Horizontal'.
Default is 'Horizontal'.

WhiskerLengthValue Property to specify the maximum length
of the whiskers as a function of the
interquartile range (IQR). The whisker
extends to the most extreme data value
within WhiskerLengthValue*IQR of the
box. Default = 1.5. If WhiskerLengthValue
equals 0, then maboxplot displays all data
values outside the box, using the plotting
symbol Symbol.

Description maboxplot(MAData) displays a box plot of the values in the columns of
data (MAData). MAData can be a numeric array or a structure containing
a field called Data.

maboxplot(MAData, ColumnName) labels the box plot column names.

maboxplot(MAStruct, FieldName) displays a box plot of the values
in the field FieldName in the microarray data structure MAStruct. If
MAStruct is block based, maboxplot creates a box plot of the values in
the field FieldName for each block.

H = maboxplot(...) returns the handle of the box plot axes.

[H, HLines] = maboxplot(...) returns the handles of the lines used
to separate the different blocks in the image.

maboxplot(..., 'PropertyName', PropertyValue, ...) defines
optional properties using property name/value pairs in any order. These
property name/value pairs are as follows:

maboxplot(..., 'Title', TitleValue, ...) allows you to specify
the title of the plot. The default TitleValue is FieldName.

maboxplot(..., 'Notch', NotchValue, ...) if NotchValue is true,
draws notched boxes. The default is false to show square boxes.

2-377

maboxplot

maboxplot(..., 'Symbol', SymbolValue, ...) allows you to specify
the symbol used for outlier values. The default Symbol is '+'.

maboxplot(..., 'Orientation', OrientationValue, ...) allows
you to specify the orientation of the box plot. The choices are
'Vertical' and 'Horizontal'. The default is 'Vertical'.

maboxplot(..., 'WhiskerLength', WhiskerLengthValue, ...)
allows you to specify the whisker length for the box plot.
WhiskerLengthValue defines the maximum length of the whiskers as a
function of the interquartile range (IQR) (default = 1.5). The whisker
extends to the most extreme data value within WhiskerLength*IQR of
the box. If WhiskerLengthValue equals 0, then maboxplot displays all
data values outside the box, using the plotting symbol Symbol.

Examples load yeastdata
maboxplot(yeastvalues,times);
xlabel('Sample Times');

% Using a structure
geoStruct = getgeodata('GSM1768');
maboxplot(geoStruct);

% For block-based data
madata = gprread('mouse_a1wt.gpr');
maboxplot(madata,'F635 Median');
figure
maboxplot(madata,'F635 Median - B635','TITLE',...

'Cy5 Channel FG - BG');

See Also Bioinformatics Toolbox functions magetfield, maimage, mairplot,
maloglog, malowess, manorm, mavolcanoplot

Statistics Toolbox function boxplot

2-378

mafdr

Purpose Estimate false discovery rate (FDR) of differentially expressed genes
from two experimental conditions or phenotypes

Syntax FDR = mafdr(PValues)
[FDR, Q] = mafdr(PValues)
[FDR, Q, Pi0] = mafdr(PValues)
[FDR, Q, Pi0, R2] = mafdr(PValues)
... = mafdr(PValues, ...'BHFDR', BHFDRValue, ...)
... = mafdr(PValues, ...'Lambda', LambdaValue, ...)
... = mafdr(PValues, ...'Method', MethodValue, ...)
... = mafdr(PValues, ...'Showplot', ShowplotValue, ...)

Arguments PValues Column vector of p-values for each gene in two
microarray data sets, such as returned by mattest.

BHFDRValue Property to control the use of the linear step-up
(LSU) procedure originally introduced by Benjamini
and Hochberg, 1995. Choices are true or false
(default).

Note If BHFDRValue is set to true, the Lambda and
Method properties are ignored.

2-379

mafdr

LambdaValue Input that specifies lambda, λ, the tuning parameter

used to estimate the true null hypotheses, ˆ ()π λ0 .
LambdaValue can be either:

• A single value that is > 0 and < 1.

• A series of values. Each value must be > 0 and <
1. There must be at least four values in the series.

Tip The series of values can be expressed by a
colon operator with the form [first:incr:last],
where first is the first value in the series, incr
is the increment, and last is the last value in
the series.

Default LambdaValue is the series of values
[0.01:0.01:0.95].

Note If LambdaValue is set to a single value, the
Method property is ignored.

2-380

mafdr

MethodValue String that specifies a method to calculate the true

null hypothesis, ˆ ()π λ0 , from the tuning parameter,
LambdaValue, when LambdaValue is a series of
values. Choices are:

• bootstrap (default)

• polynomial

ShowplotValue Property to display two plots:

• Plot of the estimated true null hypotheses, ˆ ()π λ0 ,
versus the tuning parameter, lambda, λ, with a
cubic polynomial fitting curve

• Plot of q-values versus p-values

Choices are true or false (default).

Return
Values

FDR Column vector of positive FDR (pFDR) values.

Q Column vector of q-values.

Pi0 Estimated true null hypothesis, π̂0 .

R2 Square of the correlation coefficient.

Description FDR = mafdr(PValues) computes a positive FDR (pFDR) value for
each value in PValues, a column vector of p-values for each gene in two
microarray data sets, using a procedure introduced by Storey, 2002. FDR
is a column vector of positive FDR (pFDR) values.

[FDR, Q] = mafdr(PValues) also returns a q-value for each p-value
in PValues. Q is a column vector.

2-381

mafdr

[FDR, Q, Pi0] = mafdr(PValues) also returns Pi0, the estimated
true null hypothesis, π̂0 , if using the procedure introduced by Storey,
2002.

[FDR, Q, Pi0, R2] = mafdr(PValues) also returns R2, the square of
the correlation coefficient, if using the procedure introduced by Storey,
2002, and the polynomial method to calculate the true null hypothesis,
π̂0 , from the tuning parameter, lambda, λ.

... = mafdr(PValues, ...'PropertyName',
PropertyValue, ...) calls mafdr with optional properties that use
property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property
value pairs are as follows:

... = mafdr(PValues, ...'BHFDR', BHFDRValue, ...) controls
the use of the linear step-up (LSU) procedure originally introduced by
Benjamini and Hochberg, 1995, to computes an FDR-adjusted p-value
for each value in PValues. Choices are true or false (default).

Note If BHFDRValue is set to true, the Lambda and Method properties
are ignored.

... = mafdr(PValues, ...'Lambda', LambdaValue, ...) specifies
lambda, λ, the tuning parameter used to estimate the true null

hypotheses, ˆ ()π λ0 . LambdaValue can be either:

• A single value that is > 0 and < 1.

• A series of values. Each value must be > 0 and < 1. There must be
at least four values in the series.

2-382

mafdr

Tip The series of values can be expressed by a colon operator with
the form [first:incr:last], where first is the first value in the
series, incr is the increment, and last is the last value in the series.

Default LambdaValue is the series of values [0.01:0.01:0.95].

Note If LambdaValue is set to a single value, the Method property is
ignored.

... = mafdr(PValues, ...'Method', MethodValue, ...) specifies
a method to calculate the true null hypothesis, π̂0 , from the tuning
parameter, LambdaValue, when LambdaValue is a series of values.
Choices are bootstrap (default) or polynomial.

... = mafdr(PValues, ...'Showplot', ShowplotValue, ...)
controls the display of two plots:

• Plot of the estimated true null hypotheses, ˆ ()π λ0 , versus the tuning
parameter, lambda, with a cubic polynomial fitting curve

• Plot of q-values versus p-values

Choices are true or false (default).

2-383

mafdr

Examples 1 Load the MAT file, included with Bioinformatics Toolbox, that
contains Affymetrix data from a prostate cancer study, specifically
probe intensity data from Affymetrix HG-U133A GeneChip
arrays. The two variables in the MAT file, dependentData and
independentData, are two matrices of gene expression values from
two experimental conditions.

load prostatecancerexpdata

2-384

mafdr

2 Use the mattest function to calculate p-values for the gene
expression values in the two matrices.

pvalues = mattest(dependentData, independentData, 'permute', true);

3 Use the mafdr function to calculate positive FDR values and q-values
for the gene expression values in the two matrices and plot the data.

[fdr, q] = mafdr(pvalues, 'showplot', true);

The prostatecancerexpdata.mat file used in this example contains
data from Best et al., 2005.

References [1] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R.,
Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea,
M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik,
R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F.
(2005). Molecular alterations in primary prostate cancer after androgen
ablation therapy. Clinical Cancer Research 11, 6823–6834.

[2] Storey, J.D. (2002). A direct approach to false discovery rates.
Journal of the Royal Statistical Society 64(3), 479–498.

[3] Storey, J.D., and Tibshirani, R. (2003). Statistical significance for
genomewide studies. Proc Nat Acad Sci 100(16), 9440–9445.

[4] Storey, J.D., Taylor, J.E., and Siegmund, D. (2004). Strong
control conservative point estimation and simultaneous conservative
consistency of false discovery rates: A unified approach. Journal of the
Royal Statistical Society 66, 187–205.

[5] Benjamini, Y., and Hochberg, Y. (1995). Controlling the false
discovery rate: A practical and powerful approach to multiple testing.
Journal of the Royal Statistical Society 57, 289–300.

See Also Bioinformatics Toolbox functions: gcrma, mairplot, maloglog,
mapcaplot, mattest, mavolcanoplot, rmasummary

2-385

magetfield

Purpose Extract data from microarray structure

Syntax magetfield(MAStruct, FieldName)

Arguments
MAStruct

FieldName

Description magetfield(MAStruct, FieldName) extracts data for a column
(FieldName) from a microarray structure (MAStruct).

The benefit of this function is to hide the details of extracting a column
of data from a structure created with one of the microarray reader
functions (gprread, agferead, sptread, imageneread).

Examples maStruct = gprread('mouse_a1wt.gpr');
cy3data = magetfield(maStruct,'F635 Median');
cy5data = magetfield(maStruct,'F532 Median');
mairplot(cy3data,cy5data,'title','R vs G IR plot');

See Also Bioinformatics Toolbox functions agferead, gprread, imageneread,
maboxplot, mairplot, maloglog, malowess, sptread

2-386

maimage

Purpose Spatial image for microarray data

Syntax maimage(X, FieldName)
H = maimage(...)
[H, HLines] = maimage(...)
maimage(..., 'PropertyName', PropertyValue,...)
maimage(..., 'Title', TitleValue)
maimage(..., 'ColorBar', ColorBarValue)
maimage(..., 'HandleGraphicsPropertyName' PropertyValue)

Arguments X A microarray data structure.

FieldName A field in the microarray data structure X.

TitleValue A string to use as the title for the plot. The default
title is FieldName.

ColorBarValue Property to control displaying a color bar in the
figure window. Enter either true or false. The
default value is false.

Description maimage(X, FieldName) displays an image of field FieldName from
microarray data structure X. Microarray data can be GenPix Results
(GPR) format. After creating the image, click a data point to display
the value and ID, if known.

H = maimage(...) returns the handle of the image.

[H, HLines] = maimage(...) returns the handles of the lines used
to separate the different blocks in the image.

maimage(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

maimage(..., 'Title', TitleValue) allows you to specify the title of
the plot. The default title is FieldName.

2-387

maimage

maimage(..., 'ColorBar', ColorBarValue), when ColorBarValue is
true, a color bar is shown. If ColorBarValue is false, no color bar is
shown. The default is for the color bar to be shown.

maimage(..., 'HandleGraphicsPropertyName' PropertyValue)
allows you to pass optional Handle Graphics® property name/value
pairs to the function. For example, a name/value pair for color could
be maimage(..., 'color' 'r').

Examples madata = gprread('mouse_a1wt.gpr');
maimage(madata,'F635 Median');
figure;
maimage(madata,'F635 Median - B635',...

'Title','Cy5 Channel FG - BG');
colormap hot

See Also Bioinformatics Toolbox functions: maboxplot, magetfield, mairplot,
maloglog, malowess

MATLAB function: imagesc

2-388

mainvarsetnorm

Purpose Perform rank invariant set normalization on gene expression values
from two experimental conditions or phenotypes

Syntax NormDataY = mainvarsetnorm(DataX, DataY)
NormDataY = mainvarsetnorm(..., 'Thresholds',
ThresholdsValue, ...)
NormDataY = mainvarsetnorm(..., 'Exclude',
ExcludeValue, ...)
NormDataY = mainvarsetnorm(..., 'Prctile',
PrctileValue, ...)
NormDataY = mainvarsetnorm(..., 'Iterate',
IterateValue, ...)
NormDataY = mainvarsetnorm(..., 'Method', MethodValue, ...)
NormDataY = mainvarsetnorm(..., 'Span', SpanValue, ...)
NormDataY = mainvarsetnorm(..., 'Showplot', ShowplotValue,

...)

Arguments
DataX Vector of gene expression values from a single

experimental condition or phenotype, where
each row corresponds to a gene. These data
points are used as the baseline.

DataY Vector of gene expression values from a single
experimental condition or phenotype, where
each row corresponds to a gene. These data
points will be normalized using the baseline.

2-389

mainvarsetnorm

ThresholdsValue Property to set the thresholds for the lowest
average rank and the highest average rank,
which are used to determine the invariant set.
The rank invariant set is a set of data points
whose proportional rank difference is smaller
than a given threshold. The threshold for
each data point is determined by interpolating
between the threshold for the lowest average
rank and the threshold for the highest average
rank. Select these two thresholds empirically
to limit the spread of the invariant set, but
allow enough data points to determine the
normalization relationship.

ThresholdsValue is a 1-by-2 vector [LT,
HT], where LT is the threshold for the lowest
average rank and HT is threshold for the
highest average rank. Values must be between
0 and 1. Default is [0.03, 0.07].

ExcludeValue Property to filter the invariant set of data
points, by excluding the data points whose
average rank (between DataX and DataY) is
in the highest N ranked averages or lowest N
ranked averages.

PrctileValue Property to stop the iteration process when
the number of data points in the invariant set
reaches N percent of the total number of input
data points. Default is 1.

Note If you do not use this property, the
iteration process continues until no more data
points are eliminated.

2-390

mainvarsetnorm

IterateValue Property to control the iteration process for
determining the invariant set of data points.
Enter true to repeat the process until either
no more data points are eliminated, or a
predetermined percentage of data points
(StopPrctileValue) is reached. Enter false
to perform only one iteration of the process.
Default is true.

Tip Select false for smaller data sets,
typically less than 200 data points.

MethodValue Property to select the smoothing method used
to normalize the data. Enter 'lowess' or
'runmedian'. Default is 'lowess'.

SpanValue Property to set the window size for the
smoothing method. If SpanValue is less than
1, the window size is that percentage of the
number of data points. If SpanValue is equal
to or greater than 1, the window size is of size
SpanValue. Default is 0.05, which corresponds
to a window size equal to 5% of the total
number of data points in the invariant set.

ShowplotValue Property to control the plotting of a pair of M-A
scatter plots (before and after normalization).
M is the ratio between DataX and DataY. A is
the average of DataX and DataY. Enter true to
create the pair of M-A scatter plots. Default
is false.

Description NormDataY = mainvarsetnorm(DataX, DataY) normalizes the values
in DataY, a vector of gene expression values, to a reference vector, DataX,
using the invariant set method. NormDataY is a vector of normalized
gene expression values from DataY.

2-391

mainvarsetnorm

Specifically, mainvarsetnorm:

• Determines the proportional rank difference (prd) for each pair of
ranks, RankX and RankY, from the two vectors of gene expression
values, DataX and DataY.

prd = abs(RankX - RankY)

• Determines the invariant set of data points by selecting data points
whose proportional rank differences (prd) are below threshold, which
is a predetermined threshold for a given data point (defined by
the ThresholdsValue property). It optionally repeats the process
until either no more data points are eliminated, or a predetermined
percentage of data points is reached.

The invariant set is data points with a prd < threshold.

• Uses the invariant set of data points to calculate the lowess or
running median smoothing curve, which is used to normalize the
data in DataY.

Note If DataX or DataY contains NaN values, then NormDataY will also
contain NaN values at the corresponding positions.

Tip mainvarsetnorm is useful for correcting for dye bias in two-color
microarray data.

NormDataY = mainvarsetnorm(..., 'PropertyName',
PropertyValue, ...) defines optional properties that use property
name/value pairs in any order. These property name/value pairs are
as follows:

2-392

mainvarsetnorm

NormDataY = mainvarsetnorm(..., 'Thresholds',
ThresholdsValue, ...) sets the thresholds for the lowest average
rank and the highest average rank, which are used to determine the
invariant set. The rank invariant set is a set of data points whose
proportional rank difference is smaller than a given threshold. The
threshold for each data point is determined by interpolating between
the threshold for the lowest average rank and the threshold for the
highest average rank. Select these two thresholds empirically to
limit the spread of the invariant set, but allow enough data points to
determine the normalization relationship.

ThresholdsValue is a 1-by-2 vector [LT, HT], where LT is the threshold
for the lowest average rank and HT is threshold for the highest average
rank. Values must be between 0 and 1. Default is [0.03, 0.07].

NormDataY = mainvarsetnorm(..., 'Exclude',
ExcludeValue, ...) filters the invariant set of data points,
by excluding the data points whose average rank (between DataX and
DataY) is in the highest N ranked averages or lowest N ranked averages.

NormDataY = mainvarsetnorm(..., 'Prctile',
PrctileValue, ...) stops the iteration process when the
number of data points in the invariant set reaches N percent of the total
number of input data points. Default is 1.

Note If you do not use this property, the iteration process continues
until no more data points are eliminated.

NormDataY = mainvarsetnorm(..., 'Iterate',
IterateValue, ...) controls the iteration process for
determining the invariant set of data points. When IterateValue is
true, mainvarsetnorm repeats the process until either no more data
points are eliminated, or a predetermined percentage of data points
(PrctileValue) is reached. When IterateValue is false, performs
only one iteration of the process. Default is true.

2-393

mainvarsetnorm

Tip Select false for smaller data sets, typically less than 200 data
points.

NormDataY = mainvarsetnorm(..., 'Method', MethodValue, ...)
selects the smoothing method for normalizing the data. When
MethodValue is 'lowess', mainvarsetnorm uses the lowess method.
When MethodValue is 'runmedian', mainvarsetnorm uses the running
median method. Default is 'lowess'.

NormDataY = mainvarsetnorm(..., 'Span', SpanValue, ...) sets
the window size for the smoothing method. If SpanValue is less than
1, the window size is that percentage of the number of data points.
If SpanValue is equal to or greater than 1, the window size is of size
SpanValue. Default is 0.05, which corresponds to a window size equal
to 5% of the total number of data points in the invariant set.

NormDataY = mainvarsetnorm(..., 'Showplot',
ShowplotValue, ...) determines whether to plot a pair of
M-A scatter plots (before and after normalization). M is the ratio
between DataX and DataY. A is the average of DataX and DataY. When
ShowplotValue is true, mainvarsetnorm plots the M-A scatter plots.
Default is false.

The following example illustrates how mainvarsetnorm can correct
for dye bias or scanning differences between two channels of data
from a two-color microarray experiment. Under perfect experimental
conditions, data points with equal expression values would fall along the
M = 0 line, which represents a gene expression ratio of 1. However, dye
bias caused the measured values in one channel to be higher than the
other channel, as seen in the Before Normalization plot. Normalization
corrected the variance, as seen in the After Normalization plot.

2-394

mainvarsetnorm

Examples The following example extracts data from a GPR file and creates two
column vectors of gene expression values from different experimental
conditions. It then normalizes one of the data sets.

maStruct = gprread('mouse_a1wt.gpr');
cy3data = magetfield(maStruct, 'F635 Median');
cy5data = magetfield(maStruct, 'F532 Median');
Normcy5data = mainvarsetnorm(cy3data, cy5data);

References [1] Tseng, G.C., Oh, Min-Kyu, Rohlin, L., Liao, J.C., and Wong, W.H.
(2001) Issues in cDNA microarray analysis: quality filtering, channel

2-395

mainvarsetnorm

normalization, models of variations and assessment of gene effects.
Nucleic Acids Research. 29, 2549-2557.

[2] Hoffmann, R., Seidl, T., and Dugas, M. (2002) Profound effect
of normalization on detection of differentially expressed genes in
oligonucleotide microarray data analysis. Genome Biology. 3(7):
research 0033.1-0033.11.

See Also affyinvarsetnorm, malowess, manorm, quantilenorm

2-396

mairplot

Purpose Create intensity versus ratio scatter plot of microarray data

Syntax mairplot(DataX, DataY)
[Intensity, Ratio] = mairplot(DataX, DataY)
[Intensity, Ratio, H] = mairplot(DataX, DataY)
... = mairplot(..., 'Type', TypeValue, ...)
... = mairplot(..., 'LogTrans', LogTransValue, ...)
... = mairplot(..., 'FactorLines', FactorLinesValue, ...)
... = mairplot(..., 'Title', TitleValue, ...)
... = mairplot(..., 'Labels', LabelsValue, ...)
... = mairplot(..., 'Normalize', NormalizeValue, ...)
... = mairplot(..., 'LowessOptions', LowessOptionsValue, ...)
... = mairplot(..., 'Showplot', ShowplotValue, ...)

Arguments DataX, DataY Vectors of gene expression values where each
row corresponds to a gene. For example, in a
two-color microarray experiment, DataX could
be cy3 intensity values and DataY could be cy5
intensity values.

TypeValue String that specifies the plot type. Choices
are 'IR' (plots log10 of the product of the
DataX and DataY intensities versus log2 of the
intensity ratios) or 'MA' (plots (1/2)log2 of the
product of the DataX and DataY intensities
versus log2 of the intensity ratios). Default is
'IR'.

LogTransValue Controls the conversion of data in X and Y from
natural scale to log2 scale. Set LogTransValue
to false, when the data is already log2 scale.
Default is true, which assumes the data is
natural scale.

2-397

mairplot

FactorLinesValue Adds lines to the plot showing a factor of N
change. Default is 2, which corresponds to a
level of 1 and -1 on a log2 scale.

Tip You can also change the factor lines
interactively, after creating the plot.

TitleValue String that specifies a title for the plot.

LabelsValue Cell array of labels for the data. If labels
are defined, then clicking a point on the plot
shows the label corresponding to that point.

NormalizeValue Controls the display of lowess normalized
ratio values. Enter true to display to lowess
normalized ratio values. Default is false.

Tip You can also normalize the data from the
MAIR Plot window, after creating the plot.

LowessOptionsValue Cell array of one, two, or three property
name/value pairs in any order that affect the
lowess normalization. Choices for property
name/value pairs are:
• 'Order', OrderValue

• 'Robust', RobustValue

• 'Span', SpanValue

For more information on the preceding
property name/value pairs, see malowess.

ShowplotValue Controls the display of the scatter plot.
Choices are true (default) or false.

2-398

mairplot

Return
Values

Intensity Vector containing intensity values for the
microarray gene expression data, calculated
as:
• log10 of the product of the DataX and DataY

intensities (when Type is 'IR')

• (1/2)log2 of the product of the DataX and
DataY intensities (when Type is 'MA')

Ratio Vector containing ratios of the microarray
gene expression data, calculated as
log2(DataX./DataY).

H Handle of the plot.

Description mairplot(DataX, DataY) creates a scatter plot that plots log10 of the
product of the DataX and DataY intensities versus log2 of the intensity
ratios.

[Intensity, Ratio] = mairplot(DataX, DataY) returns the intensity
and ratio values. If you set 'Normalize' to true, the returned ratio
values are normalized.

[Intensity, Ratio, H] = mairplot(DataX, DataY) returns the handle
of the plot.

... = mairplot(..., 'PropertyName', PropertyValue, ...)
calls mairplot with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case
insensitive. These property name/property value pairs are as follows:

... = mairplot(..., 'Type', TypeValue, ...) specifies the plot type.
Choices are 'IR' (plots log10 of the product of the DataX and DataY
intensities versus log2 of the intensity ratios) or 'MA' (plots (1/2)log2
of the product of the DataX and DataY intensities versus log2 of the
intensity ratios). Default is 'IR'.

2-399

mairplot

... = mairplot(..., 'LogTrans', LogTransValue, ...) controls
the conversion of data in X and Y from natural to log2 scale. Set
LogTransValue to false, when the data is already log2 scale. Default is
true, which assumes the data is natural scale.

... = mairplot(..., 'FactorLines', FactorLinesValue, ...) adds
lines to the plot showing a factor of N change. Default is 2, which
corresponds to a level of 1 and -1 on a log2 scale.

Tip You can also change the factor lines interactively, after creating
the plot.

... = mairplot(..., 'Title', TitleValue, ...) specifies a title for
the plot.

... = mairplot(..., 'Labels', LabelsValue, ...) specifies a cell
array of labels for the data. If labels are defined, then clicking a point
on the plot shows the label corresponding to that point.

... = mairplot(..., 'Normalize', NormalizeValue, ...) controls
the display of lowess normalized ratio values. Enter true to display to
lowess normalized ratio values. Default is false.

Tip You can also normalize the data from the MAIR Plot window, after
creating the plot.

... = mairplot(..., 'LowessOptions', LowessOptionsValue, ...)
lets you specify up to three property name/value pairs (in any order)
that affect the lowess normalization. Choices for property name/value
pairs are:

• 'Order', OrderValue

• 'Robust', RobustValue

2-400

mairplot

• 'Span', SpanValue

For more information on the previous three property name/value pairs,
see the malowess function.

... = mairplot(..., 'Showplot', ShowplotValue, ...) controls the
display of the scatter plot. Choices are true (default) or false.

Following is an IR plot of normalized data.

Following is an M-A plot of unnormalized data.

2-401

mairplot

The intensity versus ratio scatter plot displays the following:

• log10 (Intensity) versus log2 (Ratio) scatter plot of genes.

• Two horizontal fold change lines at a fold change level of 2, which
corresponds to a ratio of 1 and –1 on a log2 (Ratio) scale. (Lines will
be at different fold change levels, if you used the 'FactorLines'
property.)

• Data points for genes that are considered differentially expressed
(outside of the fold change lines) appear in orange.

2-402

mairplot

After you display the intensity versus ratio scatter plot, you can
interactively do the following:

• Adjust the horizontal fold change lines by click-dragging one line or
entering a value in the Fold Change text box, then clicking Update.

• Display labels for data points by clicking a data point.

• Select a gene from the Up Regulated or Down Regulated list to
highlight the corresponding data point in the plot. Press and hold
Ctrl or Shift to select multiple genes.

• Zoom the plot by selecting Tools > Zoom In or Tools > Zoom Out.

• View lists of significantly up-regulated and down-regulated genes,
and optionally, export the gene labels and indices to a structure in
the MATLAB workspace by clicking Export.

• Normalize the data by clicking the Normalize button, then selecting
whether to show the normalized plot in a separate window. If you
show the normalized plot in a separate window, the Show smooth
curve check box becomes available in the original (unnormalized)
plot.

Tip To select different lowess normalization options before
normalizing, select Tools > Set LOWESS Normalization Options,
then select options from the Options dialog box.

Examples 1 Use the gprread function to create a structure containing microarray
data.

maStruct = gprread('mouse_a1wt.gpr');

2 Use the magetfield function to extract the green (cy3) and red (cy5)
signals from the structure.

2-403

mairplot

cy3data = magetfield(maStruct,'F635 Median');
cy5data = magetfield(maStruct,'F532 Median');

3 Create an intensity versus ratio scatter plot of the cy3 and cy5 data.
Normalize the data and add a title and labels:

mairplot(cy3data, cy5data, 'Normalize', true, ...
'Title','Normalized R vs G IR plot', ...
'Labels', maStruct.Names)

4 Return intensity values and ratios without displaying the plot.

[intensities, ratios] = mairplot(cy3data, cy5data, 'Showplot', false);

References [1] Quackenbush, J. (2002). Microarray Data Normalization and
Transformation. Nature Genetics Suppl. 32, 496–501.

[2] Dudoit, S., Yang, Y.H., Callow, M.J., and Speed, T.P. (2002).
Statistical Methods for Identifying Differentially Expressed Genes
in Replicated cDNA Microarray Experiments. Statistica Sinica 12,
111–139.

See Also Bioinformatics Toolbox functions: maboxplot, magetfield,
maimage, mainvarsetnorm, maloglog, malowess, manorm, mattest,
mavolcanoplot

2-404

maloglog

Purpose Create loglog plot of microarray data

Syntax maloglog(X, Y, 'PropertyName', PropertyValue...)
maloglog(..., 'FactorLines', N)
maloglog(..., 'Title', TitleValue)
maloglog(..., 'Labels', LabelsValues)
maloglog(..., 'HandleGraphicsName', HGValue)
H = maloglog(...)

Arguments
X A numeric array of microarray expression values from

a single experimental condition.

Y A numeric array of microarray expression values from
a single experimental condition.

N Property to add two lines to the plot showing a factor
of N change.

TitleValue A string to use as the title for the plot.

LabelsValue A cell array of labels for the data in X and Y. If you
specify LabelsValue, then clicking a data point in the
plot shows the label corresponding to that point.

Description maloglog(X, Y, 'PropertyName', PropertyValue...) creates a loglog
scatter plot of X versus Y. X and Y are numeric arrays of microarray
expression values from two different experimental conditions.

maloglog(..., 'FactorLines', N) adds two lines to the plot showing
a factor of N change.

maloglog(..., 'Title', TitleValue) allows you to specify a title for
the plot.

maloglog(..., 'Labels', LabelsValues) allows you to specify a cell
array of labels for the data. If LabelsValues is defined, then clicking a
data point in the plot shows the label corresponding to that point.

maloglog(..., 'HandleGraphicsName', HGValue) allows you to pass
optional Handle Graphics property name/property value pairs to the
function.

2-405

maloglog

H = maloglog(...) returns the handle to the plot.

Examples maStruct = gprread('mouse_a1wt.gpr');
Red = magetfield(maStruct,'F635 Median');
Green = magetfield(maStruct,'F532 Median');
maloglog(Red,Green,'title','Red vs Green');
% Add factorlines and labels
figure
maloglog(Red,Green,'title','Red vs Green',...

'FactorLines',2,'LABELS',maStruct.Names);
% Now create a normalized plot
figure
maloglog(manorm(Red),manorm(Green),'title',...

'Normalized Red vs Green','FactorLines',2,...
'LABELS',maStruct.Names);

See Also Bioinformatics Toolbox functions maboxplot, magetfield,
mainvarsetnorm, maimage, mairplot, malowess, manorm, mattest,
mavolcanoplot

MATLAB function loglog

2-406

malowess

Purpose Smooth microarray data using Lowess method

Syntax YSmooth = malowess(X, Y)
malowess(..., 'PropertyName', PropertyValue,...)
malowess(..., 'Order', OrderValue ...)
malowess(..., 'Robust', RobustValue ...)
malowess(..., 'Span', SpanValue ...)

Arguments
X, Y Scatter data.

OrderValue Property to select the order of the algorithm. Enter
either 1 (linear fit) or 2 (quadratic fit). The default
order is 1.

RobustValue Property to select a robust fit. Enter either true or
false.

SpanValue Property to specify the window size. The default
value is 0.05 (5% of total points in X)

Description YSmooth = malowess(X, Y) smooths scatter data (X, Y) using the
Lowess smoothing method. The default window size is 5% of the length
of X.

malowess(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

malowess(..., 'Order', OrderValue ...) chooses the order of the
algorithm. Note that Curve Fitting Toolbox refers to Lowess smoothing
of order 2 as Loess smoothing.

malowess(..., 'Robust', RobustValue ...) uses a robust fit when
RobustValue is set to true. This option can take a long time to calculate.

malowess(..., 'Span', SpanValue ...) modifies the window size
for the smoothing function. If SpanValue is less than 1, the window
size is taken to be a fraction of the number of points in the data. If
SpanValue is greater than 1, the window is of size SpanValue.

2-407

malowess

Examples maStruct = gprread('mouse_a1wt.gpr');
cy3data = magetfield(maStruct, 'F635 Median');
cy5data = magetfield(maStruct, 'F532 Median');
[x,y] = mairplot(cy3data, cy5data);
drawnow
ysmooth = malowess(x,y);
hold on;
plot(x, ysmooth, 'rx')
ynorm = y - ysmooth;

See Also Bioinformatics Toolbox functions affyinvarsetnorm, maboxplot,
magetfield, maimage, mainvarsetnorm, mairplot, maloglog, manorm,
quantilenorm

Statistics Toolbox function robustfit

2-408

manorm

Purpose Normalize microarray data

Syntax XNorm = manorm(X)
XNorm = manorm(MAStruct, FieldName)
[XNorm, ColVal] = manorm(...)
manorm(..., 'Method', MethodValue)
manorm(..., 'Extra_Args', Extra_ArgsValue)
manorm(..., 'LogData', LogDataValue)
manorm(..., 'Percentile', PercentileValue)
manorm(..., 'Global', GlobalValue),
manorm(..., 'StructureOutput', StructureOutputValue)
manorm(..., 'NewColumnName', NewColumnNameValue)

Description XNorm = manorm(X) scales the values in each column of microarray
data (X) by dividing by the mean column intensity.

• X — Microarray data. Enter a vector or matrix.

• XNorm — Normalized microarray data.

XNorm = manorm(MAStruct, FieldName) scales the data for a field
(FieldName) for each block or print-tip by dividing each block by the
mean column intensity. The output is a matrix with each column
corresponding to the normalized data for each block.

• MAStruct — Microarray structure.

[XNorm, ColVal] = manorm(...) returns the values used to normalize
the data.

manorm(..., 'Method', MethodValue) allows you to choose the
method for scaling or centering the data. MethodValue can be 'Mean’
(default), 'Median’, 'STD' (standard deviation), 'MAD' (median absolute
deviation), or a function handle. If you pass a function handle, then
the function should ignore NaNs and must return a single value per
column of the input data.

2-409

manorm

manorm(..., 'Extra_Args', Extra_ArgsValue) allows you to pass
extra arguments to the function MethodValue. Extra_ArgsValue must
be a cell array.

manorm(..., 'LogData', LogDataValue), when LogDataValue is
true, works with log ratio data in which case the mean (or MethodValue)
of each column is subtracted from the values in the columns, instead of
dividing the column by the normalizing value.

manorm(..., 'Percentile', PercentileValue) only uses the
percentile (PercentileValue) of the data preventing large outliers from
skewing the normalization. If PercentileValue is a vector containing
two values, then the range from the PercentileValue(1) percentile to
the PercentileValue(2) percentile is used. The default value is 100,
that is to use all the data in the data set.

manorm(..., 'Global', GlobalValue), when GlobalValue is
true, normalizes the values in the data set by the global mean (or
MethodValue) of the data, as opposed to normalizing each column or
block of the data independently.

manorm(..., 'StructureOutput', StructureOutputValue), when
StructureOutputValue is true, the input data is a structure returns
the input structure with an additional data field for the normalized
data.

manorm(..., 'NewColumnName', NewColumnNameValue), when using
StructureOutput, allows you to specify the name of the column that
is appended to the list of ColumnNames in the structure. The default
behavior is to prefix 'Block Normalized' to the FieldName string.

Examples maStruct = gprread('mouse_a1wt.gpr');

% Extract some data of interest.

Red = magetfield(maStruct,'F635 Median');

Green = magetfield(maStruct,'F532 Median');

% Create a log-log plot.

maloglog(Red,Green,'factorlines',true)

% Center the data.

normRed = manorm(Red);

2-410

manorm

normGreen = manorm(Green);

% Create a log-log plot of the centered data.

figure

maloglog(normRed,normGreen,'title','Normalized','factorlines',true)

% Alternatively, you can work directly with the structure

normRedBs = manorm(maStruct,'F635 Median - B635');

normGreenBs = manorm(maStruct,'F532 Median - B532');

% Create a log-log plot of the centered data. This includes some

% zero values so turn off the warning.

figure

w = warning('off','Bioinfo:maloglog:ZeroValues');

warning('off','Bioinfo:maloglog:NegativeValues');

maloglog(normRedBs,normGreenBs,'title',...

'Normalized Background-Subtracted Median Values',...

'factorlines',true)

warning(w);

See Also Bioinformatics Toolbox functions affyinvarsetnorm, maboxplot,
magetfield, mainvarsetnorm, mairplot, maloglog, malowess,
quantilenorm, rmasummary

2-411

mapcaplot

Purpose Create Principal Component Analysis plot of microarray data

Syntax mapcaplot(Data)
mapcaplot(Data, Label)

Arguments
Data Microarray expression profile data.

Label Cell array of strings representing labels for the data
points.

Description mapcaplot(Data) creates 2-D scatter plots of principal components of
the array Data.

mapcaplot(Data, Label) uses the elements of the cell array of strings
Label, instead of the row numbers, to label the data points.

2-412

mapcaplot

2-413

mapcaplot

Once you plot the principal components, you can:

• Select principal components for the x and y axes from the drop-down
list boxes below each scatter plot.

• Click a data point to display its label.

• Select a subset of data points by click-dragging a box around
them. This will highlight the points in the selected region and the
corresponding points in the other axes. The labels of the selected
data points appear in the list box.

• Select a label in the list box to highlight the corresponding data
point in the plot. Press and hold Ctrl or Shift to select multiple
data points.

• Export the gene labels and indices to a structure in the MATLAB
workspace by clicking Export.

Examples load filteredyeastdata
mapcaplot(yeastvalues, genes)

See Also Bioinformatics Toolbox functions: clustergram, mattest,
mavolcanoplot

Statistics Toolbox function: princomp

2-414

mattest

Purpose Perform two-tailed t-test to evaluate differential expression of genes
from two experimental conditions or phenotypes

Syntax PValues = mattest(DataX, DataY)
[PValues, TScores] = mattest(DataX, DataY)
[PValues, TScores, DFs] = mattest(DataX, DataY)
... = mattest(..., 'Permute', PermuteValue, ...)
... = mattest(..., 'Showhist', ShowhistValue, ...)
... = mattest(..., 'Showplot', ShowplotValue, ...)
... = mattest(..., 'Labels', LabelsValue, ...)

Arguments
DataX, DataY Matrices of gene expression values where each

row corresponds to a gene and each column
corresponds to a replicate. DataX and DataY must
have the same number of rows and are assumed
to be normally distributed in each class with
equal variances.

DataX contains data from one experimental
condition and DataY contains data from a
different experimental condition. For example, in
a two-color microarray experiment, DataX could
be cy3 intensity values and DataY could be cy5
intensity values.

PermuteValue Controls whether permutation tests are run,
and if so, how many. Choices are true, false
(default), or any integer greater than 2. If set to
true, the number of permutations is 1000.

ShowhistValue Controls the display of histograms of t-score
distributions and p-value distributions. Choices
are true or false (default).

2-415

mattest

ShowplotValue Controls the display of a normal t-score quantile
plot. Choices are true or false (default). In the
t-score quantile plot, data points with t-scores
> (1 - 1/(2N)) or < 1/(2N) display with red
circles. N is the total number of genes.

LabelsValue Cell array of labels (typically gene names or
probe set IDs) for each row in DataX and DataY.
The labels display if you click a data point in the
t-score quantile plot.

Return
Values

PValues Column vector of p-values for each gene in DataX
and DataY.

TScores Column vector of t-scores for each gene in DataX
and DataY.

DFs Column vector containing the degree of freedom for
each gene in DataX and DataY.

Description PValues = mattest(DataX, DataY) compares the gene expression
profiles in DataX and DataY and returns a p-value for each gene. DataX
and DataY are matrices of gene expression values, in which each row
corresponds to a gene, and each column corresponds to a replicate.
DataX contains data from one experimental condition and DataY
contains data from another experimental condition. DataX and DataY
must have the same number of rows and are assumed to be normally
distributed in each class with equal variances. PValues is a column
vector of p-values for each gene.

[PValues, TScores] = mattest(DataX, DataY) also returns a t-score
for each gene in DataX and DataY. TScores is a column vector of t-scores
for each gene.

2-416

mattest

[PValues, TScores, DFs] = mattest(DataX, DataY) also returns
DFs, a column vector containing the degree of freedom for each gene
across both data sets, DataX and DataY.

... = mattest(..., 'PropertyName', PropertyValue, ...) calls
mattest with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case
insensitive. These property name/property value pairs are as follows:

... = mattest(..., 'Permute', PermuteValue, ...) controls
whether permutation tests are run, and if so, how many. PermuteValue
can be true, false (default), or any integer greater than 2. If set to
true, the number of permutations is 1000.

... = mattest(..., 'Showhist', ShowhistValue, ...) controls
the display of histograms of t-score distributions and p-value
distributions. When ShowhistValue is true, mattest displays
histograms. Default is false.

2-417

mattest

... = mattest(..., 'Showplot', ShowplotValue, ...) controls
the display of a normal t-score quantile plot. When ShowplotValue is
true, mattest displays a quantile-quantile plot. Default is false. In
the t-score quantile plot, the black diagonal line represents the sample
quantile being equal to the theoretical quantile. Data points of genes
considered to be differentially expressed lie farther away from this line.
Specifically, data points with t-scores > (1 - 1/(2N)) or < 1/(2N)
display with red circles. N is the total number of genes.

2-418

mattest

... = mattest(..., 'Labels', LabelsValue, ...) controls the
display of labels when you click a data point in the t-score quantile plot.
LabelsValue is a cell array of labels (typically gene names or probe set
IDs) for each row in DataX and DataY.

Examples 1 Load the MAT file, included with Bioinformatics Toolbox, that
contains Affymetrix data from a prostate cancer study, specifically
probe intensity data from Affymetrix HG-U133A GeneChip
arrays. The two variables in the MAT file, dependentData and
independentData, are two matrices of gene expression values from
two experimental conditions.

2-419

mattest

load prostatecancerexpdata

2 Calculate the p-values and t-scores for the gene expression values in
the two matrices and display a normal t-score quantile plot.

[pvalues,tscores] = mattest(dependentData, independentData,...
'showplot',true);

3 Calculate the p-values and t-scores again using permutation
tests (1000 permutations) and displaying histograms of t-score
distributions and p-value distributions.

[pvalues,tscores] = mattest(dependentData,independentData,...
'permute',true,'showhist',true,...
'showplot',true);

The prostatecancerexpdata.mat file used in this example contains
data from Best et al., 2005.

References [1] Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., and
Vingron, M. (2002). Variance stabilization applied to microarray
data calibration and to the quantification of differential expression.
Bioinformatics 18 Suppl1, S96–S104.

[2] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R.,
Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea,
M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik,
R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F.
(2005). Molecular alterations in primary prostate cancer after androgen
ablation therapy. Clinical Cancer Research 11, 6823–6834.

See Also Bioinformatics Toolbox functions: maboxplot, mafdr, mainvarsetnorm,
mairplot, maloglog, malowess, manorm, mavolcanoplot, rmasummary

2-420

mavolcanoplot

Purpose Create significance versus gene expression ratio (fold change) scatter
plot of microarray data

Syntax mavolcanoplot(DataX, DataY, PValues)
SigStructure = mavolcanoplot(DataX, DataY, PValues)
... mavolcanoplot(..., 'Labels', LabelsValue, ...)
... mavolcanoplot(..., 'LogTrans', LogTransValue, ...)
... mavolcanoplot(..., 'PCutoff', PCutoffValue, ...)
... mavolcanoplot(..., 'Foldchange', FoldchangeValue, ...)

Arguments
DataX Matrix or vector of gene expression values

from a single experimental condition. If
DataX is a matrix, each row is a gene,
each column is a sample, and an average
expression value is calculated for each
gene.

Note If the values in DataX are natural
scale, use the LogTrans property to
convert them to log 2 scale.

DataY Matrix or vector of gene expression values
from a single experimental condition. If a
matrix, each row is a gene, each column
is a sample, and an average expression
value is calculated for each gene.

Note If the values in DataY are natural
scale, use the LogTrans property to
convert them to log 2 scale.

2-421

mavolcanoplot

PValues Vector of p-values for each gene in data
sets from two different experimental
conditions.

LabelsValue Cell array of labels (typically gene names
or probe set IDs) for the data. After
creating the plot, you can click a data
point to display the label associated with
it. If you do not provide a LabelsValue,
data points are labeled with row numbers
from DataX and DataY.

LogTransValue Property to control the conversion of data
in DataX and DataY from natural scale to
log 2 scale. Enter true to convert data to
log 2 scale, or false. Default is false,
which assumes data is already log 2 scale.

2-422

mavolcanoplot

PCutoffValue Lets you specify a cutoff p-value to
define data points that are statistically
significant. This value is displayed
graphically as a horizontal line on the
plot. Default is 0.05, which is equivalent
to 1.3010 on the –log10 (p-value) scale.

Note You can also change the p-value
cutoff interactively after creating the plot.

FoldchangeValue Lets you specify a ratio fold change to
define data points that are differentially
expressed. Default is 2, which corresponds
to a ratio of 1 and –1 on a log2 (ratio) scale.

Note You can also change the fold change
interactively after creating the plot.

Description mavolcanoplot(DataX, DataY, PValues) creates a scatter plot of gene
expression data, plotting significance versus fold change of gene
expression ratios. It uses the average gene expression values from two
data sets, DataX and DataY, for each gene in the data sets. It plots
significance as the –log10 (p-value) from the vector, PValues. DataX and
DataY can be vectors or matrices.

SigStructure = mavolcanoplot(DataX, DataY, PValues) returns
a structure containing information for genes that are considered to be
both statistically significant (above the p-value cutoff) and significantly
differentially expressed (outside of the fold change values). The fields
within SigStructure are sorted by p-value and include:

• Name

• PCutoff

2-423

mavolcanoplot

• FCThreshold

• GeneLabels

• PValues

• FoldChanges

... mavolcanoplot(..., 'PropertyName', PropertyValue, ...)
defines optional properties that use property name/value pairs in any
order. These property name/value pairs are as follows:

... mavolcanoplot(..., 'Labels', LabelsValue, ...) lets you provide
a cell array of labels (typically gene names or probe set IDs) for the data.
After creating the plot, you can click a data point to display the label
associated with it. If you do not provide a LabelsValue, data points are
labeled with row numbers from DataX and DataY.

... mavolcanoplot(..., 'LogTrans', LogTransValue, ...) controls
the conversion of data from DataX and DataY to log2 scale. When
LogTransValue is true, mavolcanoplot converts data from natural to
log2 scale. Default is false, which assumes the data is already log2
scale.

... mavolcanoplot(..., 'PCutoff', PCutoffValue, ...) lets you
specify a p-value cutoff to define data points that are statistically
significant. This value displays graphically as a horizontal line on
the plot. Default is 0.05, which is equivalent to 1.3010 on the –log10
(p-value) scale.

Note You can also change the p-value cutoff interactively after creating
the plot.

... mavolcanoplot(..., 'Foldchange', FoldchangeValue, ...)
lets you specify a ratio fold change to define data points that are
differentially expressed. Fold changes display graphically as two

2-424

mavolcanoplot

vertical lines on the plot. Default is 2, which corresponds to a ratio
of 1 and –1 on a log2 (ratio) scale.

Note You can also change the fold change interactively after creating
the plot.

The volcano plot displays the following:

• –log10 (p-value) versus log2 (ratio) scatter plot of genes

2-425

mavolcanoplot

• Two vertical fold change lines at a fold change level of 2, which
corresponds to a ratio of 1 and –1 on a log2 (ratio) scale. (Lines will
be at different fold change levels, if you used the 'Foldchange'
property.)

• One horizontal line at the 0.05 p-value level, which is equivalent to
1.3010 on the –log10 (p-value) scale. (The line will be at a different
p-value level, if you used the 'PCutoff' property.)

• Data points for genes that are considered both statistically significant
(above the p-value line) and differentially expressed (outside of the
fold changes lines) appear in orange.

After you display the volcano scatter plot, you can interactively:

• Adjust the vertical fold change lines by click-dragging one line or
entering a value in the Fold Change text box.

• Adjust the horizontal p-value cutoff line by click-dragging or entering
a value in the p-value Cutoff text box.

• Display labels for data points by clicking a data point.

• Select a gene from the Up Regulated or Down Regulated list to
highlight the corresponding data point in the plot. Press and hold
Ctrl or Shift to select multiple genes.

• Zoom the plot by selecting Tools > Zoom In or Tools > Zoom Out.

• View lists of significantly up-regulated and down-regulated genes
and their associated p-values, and optionally, export the labels,
p-values, and fold changes to a structure in the MATLAB Workspace
by clicking Export.

Examples 1 Load a MAT file, included with Bioinformatics Toolbox, which
contains Affymetrix data variables, including dependentData and

2-426

mavolcanoplot

independentData, two matrices of gene expression values from two
experimental conditions.

load prostatecancerexpdata

2 Use the mattest function to calculate p-values for the gene
expression values in the two matrices.

pvalues = mattest(dependentData, independentData);

3 Using the two matrices, the pvalues calculated by mattest, and the
probesetIDs column vector of labels provided, use mavolcanoplot to
create a significance versus gene expression ratio scatter plot of the
microarray data from the two experimental conditions.

mavolcanoplot(dependentData, independentData, pvalues,...
'Labels', probesetIDs)

The prostatecancerexpdata.mat file used in the previous example
contains data from Best et al., 2005.

References [1] Cui, X., Churchill, G.A. (2003). Statistical tests for differential
expression in cDNA microarray experiments. Genome Biology 4, 210.

[2] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R.,
Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea,
M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik,
R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F.
(2005). Molecular alterations in primary prostate cancer after androgen
ablation therapy. Clinical Cancer Research 11, 6823–6834.

See Also Bioinformatics Toolbox functions: maboxplot, maimage,
mainvarsetnorm, mairplot, maloglog, malowess, manorm, mapcaplot,
mattest

2-427

molweight

Purpose Calculate molecular weight of amino acid sequence

Syntax molweight(SeqAA)

Arguments
SeqAA Amino acid sequence. Enter a character string or a

vector of integers from the Amino Acid Lookup on page
2-56. Examples: 'ARN', [1 2 3]. You can also enter a
structure with the field Sequence.

Description molweight(SeqAA) calculates the molecular weight for the amino acid
sequence SeqAA.

Examples 1 Get an amino acid sequence from the NCBI Genpept Database

rhodopsin = getgenpept('NP_000530');

2 Calculate the molecular weight of the sequence.

rhodopsinMW = molweight(rhodopsin)

rhodopsinMW =

3.8892e+004

See Also Bioinformatics Toolbox functions: aacount, atomiccomp, isoelectric,
proteinplot

2-428

molviewer

Purpose Display and manipulate 3-D molecule structure

Syntax molviewer
molviewer(File)
molviewer(pdbID)
molviewer(pdbStruct)
FigureHandle = molviewer(...)

2-429

molviewer

Arguments
File String specifying one of the following:

• File name of a file on the MATLAB search path or
in the MATLAB Current Directory

• Path and file name

• URL pointing to a file (URL must begin with a
protocol such as http://, ftp://, or file://)

The referenced file is a molecule model file, such as a
Protein Data Bank (PDB)-formatted file (ASCII text
file). Valid file types include:

• PDB

• MOL (MDL)

• SDF

• XYZ

• SMOL

• JVXL

• CIF/mmCIF

pdbID String specifying a unique identifier for a protein
structure record in the PDB database.

Note Each structure in the PDB database is
represented by a four-character alphanumeric
identifier. For example, 4hhb is the identifier for
hemoglobin.

pdbStruct A structure containing a field for each PDB record,
such as returned by the getpdb or pdbread function.

2-430

molviewer

Return
Values FigureHandle Figure handle to a Molecule Viewer window.

Description molviewer opens a blank Molecule Viewer window. You can display
3-D molecular structures by selecting File > Open, File > Load PDB
ID, or File > Open URL.

molviewer(File) reads the data in a molecule model file, File, and
opens a Molecule Viewer window displaying the 3-D molecular structure
for viewing and manipulation.

molviewer(pdbID) retrieves the data for a protein structure record,
pdbID, from the PDB database and opens a Molecule Viewer window
displaying the 3-D molecular structure for viewing and manipulation.

molviewer(pdbStruct) reads the data from pdbStruct, a structure
containing a field for each PDB record, and opens a Molecule
Viewer window displaying a 3-D molecular structure for viewing and
manipulation.

FigureHandle = molviewer(...) returns the figure handle to the
Molecule Viewer window.

Tip You can pass the FigureHandle to the evalrasmolscript function,
which sends RasMol script commands to the Molecule Viewer window.

Tip If you receive any errors related to memory or Java heap space, try
increasing your Java heap space as described at:

http://www.mathworks.com/support/solutions/data/1-18I2C.html

2-431

http://www.mathworks.com/support/solutions/data/1-18I2C.html

molviewer

2-432

molviewer

After displaying the 3-D molecule structure, you can:

• Click-drag the molecule to spin, rotate, and view it from different
angles.

• Hover the mouse over a subcomponent of the molecule to display an
identification label for it.

• Zoom the plot by turning the mouse scroll wheel or clicking the
following buttons:

or

• Spin the molecule by clicking .

• Change the background color between black and white by clicking

.

• Reset the molecule position by clicking .

• Show or hide the Control Panel by clicking .

• Manipulate and annotate the 3-D structure by selecting options in
the Control Panel or by right-clicking to select commands:

2-433

molviewer

• Display the RasMol Scripts console by clicking .

2-434

molviewer

Examples View the acetylsalicylic acid (aspirin) molecule, whose structural
information is contained in the Elsevier MDL molecule file aspirin.mol.

molviewer('aspirin.mol')

View the H5N1 influenza virus hemagglutinin
molecule, whose structural information is located at
www.rcsb.org/pdb/files/2FK0.pdb.gz.

molviewer('http://www.rcsb.org/pdb/files/2FK0.pdb.gz')

2-435

molviewer

View the molecule with a PDB identifier of 2DHB.

molviewer('2DHB')

View the molecule with a PDB identifier of 4hhb, and create a figure
handle for the molecule viewer.

FH = molviewer('4hhb')

Use the getpdb function to retrieve protein structure data from the
PDB database and create a MATLAB structure. Then view the protein
molecule.

pdbstruct = getpdb('1vqx')
molviewer(pdbstruct)

See Also Bioinformatics Toolbox functions: evalrasmolscript, getpdb, pdbread,
pdbwrite

2-436

msalign

Purpose Align peaks in mass spectrum to reference peaks

Syntax IntensitiesOut = msalign(MZ, Intensities, RefMZ)
... = msalign(..., 'Weights', WeightsValue, ...)
... = msalign(..., 'Range', RangeValue, ...)
... = msalign(..., 'WidthOfPulses',
WidthOfPulsesValue, ...)
... = msalign(..., 'WindowSizeRatio', WindowSizeRatioValue,

...)
... = msalign(..., 'Iterations', IterationsValue, ...)
... = msalign(..., 'GridSteps', GridStepsValue, ...)
... = msalign(..., 'SearchSpace', SearchSpaceValue, ...)
... = msalign(..., 'ShowPlot', ShowPlotValue, ...)
[IntensitiesOut, RefMZOut] = msalign(...,
'Group', GroupValue,

...)

Arguments MZ Vector of mass/charge (m/z) values for a
spectrum or set of spectra. The number
of elements in the vector equals n or the
number of rows in the matrix Intensities.

Intensities Either of the following:
• Column vector of intensity values for a

spectrum, where each row corresponds to
an m/z value.

• Matrix of intensity values for a set of mass
spectra that share the same m/z range,
where each row corresponds to an m/z
value, and each column corresponds to a
spectrum.

The number of rows equals n or the number
of elements in vector MZ.

2-437

msalign

RefMZ Vector of m/z values of known reference
masses in a sample spectrum.

Tip For reference peaks, select
compounds that do not undergo structural
transformation, such as phosphorylation.
Doing so will increase the accuracy of your
alignment and allow you to detect compounds
that do exhibit structural transformations
among the sample spectra.

WeightsValue Vector of positive values, with the same
number of elements as RefMZ. The default
vector is ones(size(RefMZ)).

RangeValue Two-element vector, in which the first
element is negative and the second element
is positive, that specifies the lower and upper
limits of a range, in m/z units, relative to
each peak. No peak will shift beyond these
limits. Default is [-100 100].

WidthOfPulsesValue Positive value that specifies the width,
in m/z units, for all the Gaussian pulses
used to build the correlating synthetic
spectrum. The point of the peak where
the Gaussian pulse reaches 60.65% of its
maximum is set to the width specified by
WidthOfPulsesValue. Default is 10.

2-438

msalign

WindowSizeRatioValue Positive value that specifies a scaling
factor that determines the size of the
window around every alignment peak.
The synthetic spectrum is compared
to the sample spectrum only within
these regions, which saves computation
time. The size of the window is given
in m/z units by WidthOfPulsesValue *
WindowSizeRatioValue. Default is 2.5,
which means at the limits of the window, the
Gaussian pulses have a value of 4.39% of
their maximum.

IterationsValue Positive integer that specifies the number of
refining iterations. At every iteration, the
search grid is scaled down to improve the
estimates. Default is 5.

GridStepsValue Positive integer that specifies the number
of steps for the search grid. At every
iteration, the search area is divided by
GridStepsValue^2. Default is 20.

SearchSpaceValue String that specifies the type of search space.
Choices are:
• 'regular' — Default. Evenly spaced

lattice.

• 'latin' — Random Latin hypercube with
GridStepsValue^2 samples.

2-439

msalign

ShowPlotValue Controls the display of a plot of an original
and aligned spectrum over the reference
masses specified by RefMZ. Choices are true,
false, or I, an integer specifying the index
of a spectrum in Intensities. If set to true,
the first spectrum in Intensities is plotted.
Default is:

• false — When return values are specified.

• true — When return values are not
specified.

GroupValue Controls the creation of RefMZOut, a new
vector of m/z values to be used as reference
masses for aligning the peaks. This vector
is created by adjusting the values in RefMZ,
based on the sample data from multiple
spectra in Intensities, such that the
overall shifting and scaling of the peaks
is minimized. Choices are true or false
(default).

Tip Set GroupValue to true only if
Intensities contains data for a large
number of spectra, and you are not confident
of the m/z values used for your reference
peaks in RefMZ. Leave GroupValue set to
false if you are confident of the m/z values
used for your reference peaks in RefMZ.

2-440

msalign

Return
Values

IntensitiesOut Either of the following:
• Column vector intensity values for a

spectrum, where each row corresponds to
an m/z value.

• Matrix of intensity values for a set
of mass spectra that share the same
mass/charge (m/z) range, where each row
corresponds to an m/z value, and each
column corresponds to a spectrum.

The intensity values represent a shifting and
scaling of the data.

RefMZOut Vector of m/z values of reference masses,
calculated from RefMZ and the sample data
from multiple spectra in Intensities, when
GroupValue is set to true.

Description IntensitiesOut = msalign(MZ, Intensities, RefMZ) aligns the
peaks in a raw mass spectrum or spectra, represented by Intensities
and MZ, to reference peaks, provided by RefMZ. First, it creates a
synthetic spectrum from the reference peaks using Gaussian pulses
centered at the m/z values specified by RefMZ. Then, it shifts and
scales the m/z scale to find the maximum alignment between the input
spectrum or spectra and the synthetic spectrum. (It uses an iterative
multiresolution grid search until it finds the best scale and shift factors
for each spectrum.) Once the new m/z scale is determined, the corrected
spectrum or spectra are created by resampling their intensities at
the original m/z values, creating IntensitiesOut, a vector or matrix
of corrected intensity values. The resampling method preserves the
shape of the peaks.

2-441

msalign

Note The msalign function works best with three to five reference
peaks (marker masses) that you know will appear in the spectrum.
If you use a single reference peak (internal standard), there is
a possibility of aligning sample peaks to the incorrect reference
peaks as msalign both scales and shifts the MZ vector. If using a
single reference peak, you might need to only shift the MZ vector.
To do this, use IntensitiesOut = interp1(MZ, Intensities,
MZ-(ReferenceMass-ExperimentalMass). For more information, see
Aligning Mass Spectrum with One Reference Peak on page 2-447.

... = msalign(..., 'PropertyName', PropertyValue, ...) calls
msalign with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case
insensitive. These property name/property value pairs are as follows:

... = msalign(..., 'Weights', WeightsValue, ...) specifies
the relative weight for each mass in RefMZ, the vector of reference m/z
values. WeightsValue is a vector of positive values, with the same
number of elements as RefMZ. The default vector is ones(size(RefMZ)),
which means each reference peak is weighted equally, so that more
intense reference peaks have a greater effect in the alignment
algorithm. If you have a less intense reference peak, you can increase
its weight to emphasize it more in the alignment algorithm.

... = msalign(..., 'Range', RangeValue, ...) specifies the
lower and upper limits of the range, in m/z units, relative to each peak.
No peak will shift beyond these limits. RangeValue is a two-element
vector, in which the first element is negative and the second element is
positive. Default is [-100 100].

2-442

msalign

Note Use these values to tune the robustness of the algorithm. Ideally,
you should keep the range within the maximum expected shift. If you
try to correct larger shifts by increasing the limits, you increase the
possibility of picking incorrect peaks to align to the reference masses.

... = msalign(..., 'WidthOfPulses', WidthOfPulsesValue,

...) specifies the width, in m/z units, for all the Gaussian pulses used
to build the correlating synthetic spectrum. The point of the peak
where the Gaussian pulse reaches 60.65% of its maximum is set to
the width specified by WidthOfPulsesValue. Choices are any positive
value. Default is 10. WidthOfPulsesValue may also be a function
handle. The function is evaluated at the respective m/z values and
returns a variable width for the pulses. Its evaluation should give
reasonable values between 0 and max(abs(Range)); otherwise, the
function returns an error.

Note Tuning the spread of the Gaussian pulses controls a tradeoff
between robustness (wider pulses) and precision (narrower pulses).
However, the spread of the pulses is unrelated to the shape of the
observed peaks in the spectrum. The purpose of the pulse spread is to
drive the optimization algorithm.

... = msalign(..., 'WindowSizeRatio',
WindowSizeRatioValue, ...) specifies a scaling factor
that determines the size of the window around every alignment peak.
The synthetic spectrum is compared to the sample spectrum only within
these regions, which saves computation time. The size of the window is
given in m/z units by WidthOfPulsesValue * WindowSizeRatioValue.
Choices are any positive value. Default is 2.5, which means at the
limits of the window, the Gaussian pulses have a value of 4.39% of
their maximum.

2-443

msalign

... = msalign(..., 'Iterations', IterationsValue, ...)
specifies the number of refining iterations. At every iteration, the
search grid is scaled down to improve the estimates. Choices are any
positive integer. Default is 5.

... = msalign(..., 'GridSteps', GridStepsValue, ...)
specifies the number of steps for the search grid. At every iteration, the
search area is divided by GridStepsValue^2. Choices are any positive
integer. Default is 20.

... = msalign(..., 'SearchSpace', SearchSpaceValue, ...)
specifies the type of search space. Choices are:

• 'regular' — Default. Evenly spaced lattice.

• 'latin' — Random Latin hypercube with GridStepsValue^2
samples.

... = msalign(..., 'ShowPlot', ShowPlotValue, ...) controls
the display of a plot of an original and aligned spectrum over the
reference masses specified by RefMZ. Choices are true, false, or I, an
integer specifying the index of a spectrum in Intensities. If set to
true, the first spectrum in Intensities is plotted. Default is:

• false — When return values are specified.

• true — When return values are not specified.

[IntensitiesOut, RefMZOut] = msalign(...,
'Group', GroupValue, ...) controls the creation of RefMZOut, a new
vector of m/z values to be used as reference masses for aligning the
peaks. This vector is created by adjusting the values in RefMZ, based
on the sample data from multiple spectra in Intensities, such that
the overall shifting and scaling of the peaks is minimized. Choices are
true or false (default).

2-444

msalign

Tip Set GroupValue to true only if Intensities contains data for a
large number of spectra, and you are not confident of the m/z values
used for your reference peaks in RefMZ. Leave GroupValue set to false
if you are confident of the m/z values used for your reference peaks in
RefMZ.

Examples Aligning Mass Spectrum with Three or More Reference Peaks

1 Load sample data, reference masses, and parameter data for
synthetic peak width.

load sample_lo_res
R = [3991.4 4598 7964 9160];
W = [60 100 60 100];

2 Display a color image of the mass spectra before alignment.

msheatmap(MZ_lo_res,Y_lo_res,'markers',R,'range',[3000 10000])
title('before alignment')

2-445

msalign

3 Align spectra with reference masses and display a color image of
mass spectra after alignment.

YA = msalign(MZ_lo_res,Y_lo_res,R,'weights',W);
msheatmap(MZ_lo_res,YA,'markers',R,'range',[3000 10000])
title('after alignment')

2-446

msalign

Aligning Mass Spectrum with One Reference Peak

It is not recommended to use the msalign function if you have only
one reference peak. Instead, use the following procedure, which shifts
the MZ vector, but does not scale it.

1 Load sample data and view the first sample spectrum.

load sample_lo_res
MZ = MZ_lo_res;
Y = Y_lo_res(:,1);

2-447

msalign

msviewer(MZ, Y)

2 Use the tall peak around 4000 m/z as the reference peak. To

determine the reference peak’s m/z value, click , and then
click-drag to zoom in on the peak. Right-click in the center of the
peak, and then click Add Marker to label the peak with its m/z value.

2-448

msalign

3 Shift a spectrum by the difference between RP, the known reference
mass of 4000 m/z, and SP, the experimental mass of 4051.14 m/z.

RP = 4000;
SP = 4051.14;
YOut = interp1(MZ, Y, MZ-(RP-SP));

4 Plot the original spectrum in red and the shifted spectrum in blue
and zoom in on the reference peak.

plot(MZ,Y,'r',MZ,YOut,'b:')
xlabel('Mass/Charge (M/Z)')
ylabel('Relative Intensity')

2-449

msalign

legend('Y','YOut')
axis([3600 4800 -2 60])

References [1] Monchamp, P., Andrade-Cetto, L., Zhang, J.Y., and Henson, R.
(2007) Signal Processing Methods for Mass Spectrometry. In Systems
Bioinformatics: An Engineering Case-Based Approach, G. Alterovitz
and M.F. Ramoni, eds. (Artech House Publishers).

See Also Bioinformatics Toolbox functions: msbackadj, msheatmap, mspalign,
mspeaks, msresample, msviewer

2-450

msbackadj

Purpose Correct baseline of mass spectrum

Syntax Yout = msbackadj(MZ, Y)
msbackadj(..., 'PropertyName', PropertyValue,...)
msbackadj(..., 'WindowSize', WindowSizeValue)
msbackadj(..., 'StepSize', StepSizeValue)
msbackadj(..., 'RegressionMethod', RegressionMethodValue)
msbackadj(..., 'EstimationMethod', EstimationMethodValue)
msbackadj(..., 'SmoothMethod', SmoothMethodValue)
msbackadj(..., 'QuantileValue', QuantileValueValue)
msbackadj(..., 'PreserveHeights', PreserveHeightsValue)
msbackadj(..., 'ShowPlot', ShowPlotValue)

Arguments
MZ Range of mass/charge ions. Enter a vector with the

range of ions in the spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description Yout = msbackadj(MZ, Y) adjusts the variable baseline of a raw mass
spectrum by following three steps:

1 Estimates the baseline within multiple shifted windows of width
200 m/z

2 Regresses the varying baseline to the window points using a spline
approximation

3 Adjusts the baseline of the spectrum (Y)

msbackadj(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

2-451

msbackadj

msbackadj(..., 'WindowSize', WindowSizeValue) specifies the
width for the shifting window. WindowSizeValue can also be a function
handler. The function is evaluated at the respective MZ values and
returns a variable width for the windows. This option is useful for cases
where the resolution of the signal is dissimilar at different regions of
the spectrogram. The default value is 200 (baseline point estimated for
windows with a width of 200 m/z).

Note The result of this algorithm depends on carefully choosing the
window size and the step size. Consider the width of your peaks in
the spectrum and the presence of possible drifts. If you have wider
peaks towards the end of the spectrum, you may want to use variable
parameters.

msbackadj(..., 'StepSize', StepSizeValue)specifies the steps for
the shifting window. The default value is 200 m/z (baseline point is
estimated for windows placed every 200 m/z). StepSizeValue may also
be a function handle. The function is evaluated at the respective m/z
values and returns the distance between adjacent windows.

msbackadj(..., 'RegressionMethod', RegressionMethodValue)
specifies the method to regress the window estimated points to a soft
curve. Enter 'pchip' (shape-preserving piecewise cubic interpolation),
'linear'(linear interpolation), or 'spline'(spline interpolation). The
default value is 'pchip'.

msbackadj(..., 'EstimationMethod', EstimationMethodValue)
specifies the method for finding the likely baseline value in every
window. Enter 'quantile' (quantile value is set to 10%) or 'em'
(assumes a doubly stochastic model). With em, every sample is
the independent and identically distributed (i.i.d.) draw of any of
two normal distributed classes (background or peaks). Because
the class label is hidden, the distributions are estimated with an
Expectation-Maximization algorithm. The ultimate baseline value is
the mean of the background class.

2-452

msbackadj

msbackadj(..., 'SmoothMethod', SmoothMethodValue) specifies the
method for smoothing the curve of estimated points and eliminating
the effects of possible outliers. Enter 'none', 'lowess' (linear fit),
'loess' (quadratic fit), 'rlowess' (robust linear), or 'rloess' (robust
quadratic fit). Default value is 'none'.

msbackadj(..., 'QuantileValue', QuantileValueValue) specifies
the quantile value. The default value is 0.10.

msbackadj(..., 'PreserveHeights', PreserveHeightsValue),
when PreserveHeightsValue is true, sets the baseline subtraction
mode to preserve the height of the tallest peak in the signal. The default
value is false and peak heights are not preserved.

msbackadj(..., 'ShowPlot', ShowPlotValue) plots the baseline
estimated points, the regressed baseline, and the original spectrum.
When msbackadj is called without output arguments, the spectra are
plotted unless ShowPlotValue is false. When ShowPlotValue is true,
only the first spectrum in Y is plotted. ShowPlotValue can also contain
an index to one of the spectra in Y.

Example 1 Load sample data.

load sample_lo_res

2 Adjust the baseline for a group of spectra and show only the third
spectrum and its estimated background.

YB = msbackadj(MZ_lo_res,Y_lo_res,'SHOWPLOT',3);

2-453

msbackadj

3 Plot the estimated baseline for the fourth spectrum in Y_lo_res using
an anonymous function to describe an m/z dependent parameter.

wf = @(mz) 200 + .001 .* mz;
msbackadj(MZ_lo_res,Y_lo_res(:,4),'STEPSIZE',wf);

2-454

msbackadj

See Also Bioinformatics Toolbox functions msalign, mslowess, msheatmap,
msnorm, mspeaks, msresample, mssgolay, msviewer

2-455

msdotplot

Purpose Plot set of peak lists from LC/MS or GC/MS data set

Syntax msdotplot(Peaks, Times)
msdotplot(FigHandle, Peaks, Times)
msdotplot(..., 'Quantile', QuantileValue)
PlotHandle = msdotplot(...)

Arguments
Peaks Cell array of peak lists, where each element is a

two-column matrix with m/z values in the first
column and ion intensity values in the second
column. Each element corresponds to a spectrum
or retention time.

Tip You can use the mzxml2peaks function to
create the Peaks cell array.

Times Vector of retention times associated with an LC/MS
or GC/MS data set. The number of elements in
Times equals the number of elements in the cell
array Peaks.

Tip You can use the mzxml2peaks function to
create the Times vector.

FigHandle Handle to an open Figure window such as one
created by the msheatmap function.

QuantileValue Value that specifies a percentage. When peaks are
ranked by intensity, only those that rank above
this percentage are plotted. Choices are any value
≥ 0 and ≤ 1. Default is 0. For example, setting
QuantileValue = 0 plots all peaks, and setting
QuantileValue = 0.8 plots only the 20% most
intense peaks.

2-456

msdotplot

Return
Values

PlotHandle Handle to the line series object (figure plot).

Description msdotplot(Peaks, Times) plots a set of peak lists from a
liquid chromatography/mass spectrometry (LC/MS) or gas
chromatography/mass spectrometry (GC/MS) data set represented by
Peaks, a cell array of peak lists, where each element is a two-column
matrix with m/z values in the first column and ion intensity values in
the second column, and Times, a vector of retention times associated
with the spectra. Peaks and Times have the same number of elements.
The data is plotted into any existing figure generated by the msheatmap
function; otherwise, the data is plotted into a new Figure window.

msdotplot(FigHandle, Peaks, Times) plots the set of peak lists
into the axes contained in an open Figure window with the handle
FigHandle.

Tip This syntax is useful to overlay a dot plot on top of a heat map of
mass spectrometry data created with the msheatmap function.

msdotplot(..., 'Quantile', QuantileValue) plots only the most
intense peaks, specifically those in the percentage above the specified
QuantileValue. Choices are any value ≥ 0 and ≤ 1. Default is 0.
For example, setting QuantileValue = 0 plots all peaks, and setting
QuantileValue = 0.8 plots only the 20% most intense peaks.

PlotHandle = msdotplot(...) returns a handle to the line series
object (figure plot). You can use this handle as input to the get function
to display a list of the plot’s properties. You can use this handle as input
to the set function to change the plot’s properties, including showing
and hiding points.

Examples 1 Load a MAT file, included with Bioinformatics Toolbox, which
contains LC/MS data variables, including peaks and ret_time.
peaks is a cell array of peak lists, where each element is a two-column

2-457

msdotplot

matrix of m/z values and ion intensity values, and each element
corresponds to a spectrum or retention time. ret_time is a column
vector of retention times associated with the LC/MS data set.

load lcmsdata

2 Create a dot plot with only the 5% most intense peaks.

msdotplot(peaks,ret_time,'Quantile',0.95)

2-458

msdotplot

3 Resample the data, then create a heat map and a dot plot of the
LC/MS data.

[MZ,Y] = msppresample(peaks,5000);
msheatmap(MZ,ret_time,log(Y))

msdotplot(peaks,ret_time)

2-459

msdotplot

4 Zoom in on the heat map to see the detail.

axis([470 520 3200 3600])

2-460

msdotplot

See Also Bioinformatics Toolbox functions: msheatmap, mspalign, mspeaks,
msppresample, mzxml2peaks, mzxmlread

2-461

msheatmap

Purpose Create pseudocolor image of set of mass spectra

Syntax msheatmap(MZ, Intensities)
msheatmap(MZ, Times, Intensities)
msheatmap(..., 'Midpoint', MidpointValue, ...)
msheatmap(..., 'Range', RangeValue, ...)
msheatmap(..., 'Markers', MarkersValue, ...)
msheatmap(..., 'SpecIdx', SpecIdxValue, ...)
msheatmap(..., 'Group', GroupValue, ...)
msheatmap(..., 'Resolution', ResolutionValue, ...)

Arguments
MZ Column vector of common mass/charge (m/z)

values for a set of spectra. The number of elements
in the vector equals the number of rows in the
matrix Intensities.

Note You can use the msppresample function to
create the MZ vector.

Times Column vector of retention times associated
with a liquid chromatography/mass spectrometry
(LC/MS) or gas chromatography/mass spectrometry
(GC/MS) data set. The number of elements in the
vector equals the number of columns in the matrix
Intensities. The retention times are used to
label the y-axis of the heat map.

Tip You can use the mzxml2peaks function to
create the Times vector.

2-462

msheatmap

Intensities Matrix of intensity values for a set of mass
spectra that share the same m/z range. Each row
corresponds to an m/z value, and each column
corresponds to a spectrum or retention time. The
number of rows equals the number of elements
in vector MZ. The number of columns equals the
number of elements in vector Times.

Note You can use the msppresample function to
create the Intensities matrix.

2-463

msheatmap

MidpointValue Value specifying a quantile of the ion intensity
values to fall below the midpoint of the color
map, meaning they do not represent peaks.
msheatmap uses a custom color map where cool
colors represent nonpeak regions, white represents
the midpoint, and warm colors represent peaks.
Choices are any value ≥ 0 and ≤ 1. Default is:

• 0.99 — For LC/MS or GC/MS data or when
input T is provided. This means that 1% of the
pixels are warm colors and represent peaks.

• 0.95 — For non-LC/MS or non-GC/MS data or
when input T is not provided. This means that
5% of the pixels are warm colors and represent
peaks.

Tip You can also change the midpoint interactively
after creating the heat map by right-clicking the
color bar, selecting Interactive Colormap Shift,
and then click-dragging the cursor vertically on the
color bar. This technique is useful when comparing
multiple heat maps.

RangeValue 1-by-2 vector specifying the m/z range for the
x-axis of the heat map. RangeValue must be within
[min(MZ) max(MZ)]. Default is the full range
[min(MZ) max(MZ)].

MarkersValue Vector of m/z values to mark on the top horizontal
axis of the heat map. Default is [].

2-464

msheatmap

SpecIdxValue Either of the following:
• Vector of values with the same number of

elements as columns (spectra) in the matrix
Intensities.

• Cell array of strings with the same number of
elements as columns (spectra) in the matrix
Intensities.

Each value or string specifies a label for the
corresponding spectrum. These values or strings
are used to label the y-axis of the heat map.

Note If input Times is provided, it is assumed
that Intensities contains LC/MS or GC/MS data,
and SpecIdxValue is ignored.

2-465

msheatmap

GroupValue Either of the following:
• Vector of values with the same number of

elements as rows in the matrix Intensities

• Cell array of strings with the same number
of elements as rows (spectra) in the matrix
Intensities

Each value or string specifies a group to which the
corresponding spectrum belongs. The spectra are
sorted and combined into groups along the y-axis
in the heat map.

Note If input Times is provided, it is assumed
that Intensities contains LC/MS or GC/MS data,
and GroupValue is ignored.

ResolutionValue Value specifying the horizontal resolution of the
heat map image. Increase this value to enhance
details. Decrease this value to reduce memory
usage. Default is:
• 0.5 — When MZ contains > 2,500 elements.

• 0.05 — When MZ contains <= 2,500 elements.

Description msheatmap(MZ, Intensities) displays a pseudocolor heat map image
of the intensities for the spectra in matrix Intensities.

msheatmap(MZ, Times, Intensities) displays a pseudocolor heat
map image of the intensities for the spectra in matrix Intensities,
using the retention times in vector Times to label the y-axis.

msheatmap(..., 'PropertyName', PropertyValue, ...) calls
msheatmap with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case
insensitive. These property name/property value pairs are as follows:

2-466

msheatmap

msheatmap(..., 'Midpoint', MidpointValue, ...) specifies a
quantile of the ion intensity values to fall below the midpoint of the
color map, meaning they do not represent peaks. msheatmap uses a
custom color map where cool colors represent nonpeak regions, white
represents the midpoint, and warm colors represent peaks. Choices are
any value between 0 and 1. Default is:

• 0.99 — For LC/MS or GC/MS data or when input T is provided. This
means that 1% of the pixels are warm colors and represent peaks.

• 0.95 — For non-LC/MS or non-GC/MS data or when input T is not
provided. This means that 5% of the pixels are warm colors and
represent peaks.

Tip You can also change the midpoint interactively after creating
the heat map by right-clicking the color bar, selecting Interactive
Colormap Shift, then click-dragging the cursor vertically on the color
bar. This technique is useful when comparing multiple heat maps.

msheatmap(..., 'Range', RangeValue, ...) specifies the m/z range
for the x-axis of the heat map. RangeValue is a 1-by-2 vector that must
be within [min(MZ) max(MZ)]. Default is the full range [min(MZ)
max(MZ)].

msheatmap(..., 'Markers', MarkersValue, ...) places markers
along the top horizontal axis of the heat map for the m/z values specified
in the vector MarkersValue. Default is [].

msheatmap(..., 'SpecIdx', SpecIdxValue, ...) labels the
spectra along the y-axis in the heat map. The labels are specified by
SpecIdxValue, a vector of values or cell array of strings. The number
of values or strings is the same as the number of columns (spectra) in
the matrix Intensities. Each value or string specifies a label for the
corresponding spectrum.

msheatmap(..., 'Group', GroupValue, ...) sorts and combines
spectra into groups along the y-axis in the heat map. The groups are

2-467

msheatmap

specified by GroupValue, a vector of values or cell array of strings. The
number of values or strings is the same as the number of rows in the
matrix Intensities. Each value or string specifies a group to which
the corresponding spectrum belongs.

msheatmap(..., 'Resolution', ResolutionValue, ...) specifies
the horizontal resolution of the heat map image. Increase this value to
enhance details. Decrease this value to reduce memory usage. Default
is:

• 0.5 — When MZ contains > 2,500 elements.

• 0.05 — When MZ contains <= 2,500 elements.

Examples SELDI-TOF Data

1 Load SELDI-TOF sample data.

load sample_lo_res

2 Create a vector of four m/z values to mark along the top horizontal
axis of the heat map.

M = [3991.4 4598 7964 9160];

3 Display the heat map with m/z markers and a limited m/z range.

msheatmap(MZ_lo_res,Y_lo_res,'markers',M,'range',[3000 10000])

2-468

msheatmap

4 Display the heat map again grouping each spectrum into one of two
groups.

TwoGroups = [1 1 2 2 1 1 2 2];

msheatmap(MZ_lo_res,Y_lo_res,'markers',M,'group',TwoGroups)

2-469

msheatmap

Liquid Chromatography/Mass Spectrometry (LC/MS) Data

1 Load LC/MS sample data.

load lcmsdata

2 Resample the peak lists to create a vector of m/z values and a matrix
of intensity values.

[MZ, Intensities] = msppresample(peaks, 5000);

2-470

msheatmap

3 Display the heat map showing mass spectra at different retention
times.

msheatmap(MZ, ret_time, log(Intensities))

See Also Bioinformatics Toolbox functions: msalign, msbackadj, msdotplot,
mslowess, msnorm, mspalign, msresample, mssgolay, msviewer

2-471

mslowess

Purpose Smooth mass spectrum using nonparametric method

Syntax Yout = mslowess(MZ, Y, 'PropertyName', PropertyValue...)
mslowess(..., 'Order', OrderValue)
mslowess(..., 'Span', SpanValue)
mslowess(..., 'Kernel', KernelValue)
mslowess(..., 'RobustIterations', RobustIterationsValue)
mslowess(..., 'ShowPlot', ShowPlotValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description Yout = mslowess(MZ, Y, 'PropertyName', PropertyValue...)
smoothes a mass spectrum (Y) using a locally weighted linear regression
(lowess) method with a default span of 10 samples.

Note 1) mslowess assumes that a mass/charge vector (MZ) might not
be uniformly spaced. Therefore, the sliding window for smoothing is
centered using the closest samples in terms of the MZ value and not
in terms of the MZ indices.

2) When the vector MZ does not have repeated values or NaNs, the
algorithm is approximately twice as fast.

mslowess(..., 'Order', OrderValue) specifies the order
(OrderValue) of the Lowess smoother. Enter 1 (linear polynomial fit or
Lowess), 2 (quadratic polynomial fit or Loess), or 0 (equivalent to a
weighted local mean estimator and presumably faster because only a

2-472

mslowess

mean computation is performed instead of a least squares regression).
The default value is 1.

Note Curve Fitting Toolbox also refers to Lowess smoothing of order 2
as Loess smoothing.

mslowess(..., 'Span', SpanValue) specifies the window size for the
smoothing kernel. If SpanValue is greater than 1, the window is equal
to SpanValue number of samples independent of the mass/charge vector
(MZ). The default value is 10 samples. Higher values will smooth the
signal more at the expense of computation time. If SpanValue is less
than 1, the window size is taken to be a fraction of the number of points
in the data. For example, when SpanValue is 0.005, the window size is
equal to 0.50% of the number of points in MZ.

mslowess(..., 'Kernel', KernelValue) selects the function
(KernelValue) for weighting the observed ion intensities. Samples close
to the MZ location being smoothed have the most weight in determining
the estimate. Enter

'tricubic' (default) (1 - (dist/dmax).^3).^3
'gaussian' exp(-(2*dist/dmax).^2)
'linear' 1-dist/dmax

mslowess(..., 'RobustIterations', RobustIterationsValue)
specifies the number of iterations (RobustValue) for a robust fit. If
RobustIterationsValue is 0 (default), no robust fit is performed. For
robust smoothing, small residual values at every span are outweighed to
improve the new estimate. 1 or 2 robust iterations are usually adequate
while, larger values might be computationally expensive.

2-473

mslowess

Note For a uniformly spaced MZ vector, a nonrobust smoothing with
Order equal to 0 is equivalent to filtering the signal with the kernel
vector.

mslowess(..., 'ShowPlot', ShowPlotValue)plots the smoothed
spectrum over the original spectrum. When mslowess is called without
output arguments, the spectra are plotted unless ShowPlotValue is
false. When ShowPlotValue is true, only the first spectrum in Y is
plotted. ShowPlotValue can also contain an index to one of the spectra
in Y.

Example 1 Load sample data.

load sample_lo_res

2 Smooth spectrum and draw figure with unsmoothed and smoothed
spectra.

YS = mslowess(MZ_lo_res,Y_lo_res(:,1),'Showplot',true);

2-474

mslowess

2-475

mslowess

See Also Bioinformatics Toolbox functions msalign, msbackadj, msheatmap,
msheatmap,msnorm, mspeaks, msresample, mssgolay, msviewer

2-476

msnorm

Purpose Normalize set of mass spectra

Syntax Yout = msnorm(MZ, Y)
[Yout, NormParameters] = msnorm(...)
msnorm(MZ, NewY, NormParameters)
msnorm(..., 'PropertyName', PropertyValue,...)
msnorm(..., 'Quantile', QuantileValue)
msnorm(..., 'Limits', LimitsValue)
msnorm(..., 'Consensus', ConsensusValue)
msnorm(..., 'Method', MethodValue)
msnorm(..., 'Max', MaxValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description Yout = msnorm(MZ, Y) normalizes a group of mass spectra by
standardizing the area under the curve (AUC) to the group median.

[Yout, NormParameters] = msnorm(...) returns a structure with
the parameters to normalize another group of spectra.

msnorm(MZ, NewY, NormParameters) uses the parameter information
from a previous normalization (NormParameters) to normalize a new
set of spectra (NewY) with the MZ positions and output scale from the
previous normalization. NormParameters is a structure created by
msnorm. If a consensus proportion (ConsensusValue) was given in
the previous normalization, no new MZ positions are selected, and
normalization is performed using the same MZ positions.

msnorm(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

2-477

msnorm

msnorm(..., 'Quantile', QuantileValue)specifies a 1-by-2 vector
with the quantile limits for reducing the set of MZ values. For example,
when QuantileValue is [0.9 1], only the largest 10% of ion intensities
in every spectrum are used to compute the AUC. When QuantileValue
is a scalar, the scalar value represents the lower quantile limit and the
upper quantile limit is set to 1. The default value is [0 1] (use the
whole area under the curve, AUC).

msnorm(..., 'Limits', LimitsValue) specifies a 1-by-2 vector with
an MZ range for picking normalization points. This parameter is useful
to eliminate low-mass noise from the AUC calculation. The default
value is [1, max(MZ)].

msnorm(..., 'Consensus', ConsensusValue) selects MZ positions
with a consensus rule to include an MZ position into the AUC. Its
ion intensity must be within the quantile limits of at least part
(ConsensusValue) of the spectra in Y. The same MZ positions are used to
normalize all the spectrums. Enter a scalar between 0 and 1.

Use the Consensus property to eliminate low-intensity peaks and noise
from the normalization.

msnorm(..., 'Method', MethodValue) selects a method for
normalizing the AUC of every spectrum. Enter either 'Median'
(default) or 'Mean'.

msnorm(..., 'Max', MaxValue), after individually normalizing every
spectrum, scales each spectrum to an overall maximum intensity
(Max). Max is a scalar. if omitted, no postscaling is performed. If
QuantileValue is [1 1], then a single point (peak height of the tallest
peak) is normalized to Max.

Example 1 1 Load sample data and plot one of the spectra.

load sample_lo_res;
Y = Y_lo_res(:,[1 2 5 6]);
MZ = MZ_lo_res;
plot(MZ, Y(:, 4));

2-478

msnorm

2 Normalize the AUC of every spectrum to its median, eliminating
low-mass noise, and post-rescaling such that the maximum intensity
is 100.

Y1 = msnorm(MZ,Y,'Limits',[1000 inf],'Max',100);
plot(MZ, Y1(:, 4));

2-479

msnorm

3 Normalize the ion intensity of every spectrum to the maximum
intensity of the single highest peak from any of the spectra in the
range above 100 m/z.

Y2 = msnorm(MZ,Y,'QUANTILE', [1 1],'LIMITS',[1000 inf]);

Example 2 1 Select MZ regions where the intensities are within the third quartile
in at least 90% of the spectrograms.

[Y3,S] = msnorm(MZ,Y,'Quantile',[0.5 0.75],'Consensus',0.9);

2 Use the same MZ regions to normalize another set of spectrograms.

Y4 = msnorm(MZ,Y,S);

See Also Bioinformatics Toolbox functions msalign, msbackadj, msheatmap,
mslowess, msresample, mssgolay, msviewer

2-480

mspalign

Purpose Align mass spectra from multiple peak lists from LC/MS or GC/MS
data set

Syntax [CMZ, AlignedPeaks] = mspalign(Peaks)
[CMZ, AlignedPeaks] = mspalign(Peaks, ...'Quantile',
QuantileValue, ...)
[CMZ, AlignedPeaks] = mspalign(Peaks,
...'EstimationMethod',

EstimationMethodValue, ...)
[CMZ, AlignedPeaks] = mspalign(Peaks,
...'CorrectionMethod',

CorrectionMethodValue, ...)

Arguments Peaks Cell array of peak lists from a liquid
chromatography/mass spectrometry
(LC/MS) or gas chromatography/mass
spectrometry (GC/MS) data set. Each
element in the cell array is a two-column
matrix with m/z values in the first column
and ion intensity values in the second
column. Each element corresponds to a
spectrum or retention time.

Note You can use the mzxml2peaks
function or the mspeaks function to create
the Peaks cell array.

QuantileValue Value that determines which peaks are
selected by the estimation method to create
CMZ, the vector of common m/z values.
Choices are any value ≥ 0 and ≤ 1. Default
is 0.95.

2-481

mspalign

EstimationMethodValueString specifying the method to estimate
CMZ, the vector of common mass/charge (m/z)
values. Choices are:

• histogram — Default method. Peak
locations are clustered using a kernel
density estimation approach. The peak
ion intensity is used as a weighting factor.
The center of all the clusters conform to
the CMZ vector.

• regression — Takes a sample of the
distances between observed significant
peaks and regresses the inter-peak
distance to create the CMZ vector with
similar inter-element distances.

CorrectionMethodValueString specifying the method to align each
peak list to the CMZ vector. Choices are:

• nearest-neighbor — Default method.
For each common peak in the CMZ vector,
its counterpart in each peak list is the
peak that is closest to the common peak’s
m/z value.

• shortest-path — For each common peak
in the CMZ vector, its counterpart in each
peak list is selected using the shortest
path algorithm.

Return
Values

CMZ Vector of common mass/charge (m/z) values
estimated by the mspalign function.

AlignedPeaks Cell array of peak lists, with the same form
as Peaks, but with corrected m/z values in
the first column of each matrix.

2-482

mspalign

Description [CMZ, AlignedPeaks] = mspalign(Peaks) aligns mass spectra from
multiple peak lists (centroided data), by first estimating CMZ, a vector of
common mass/charge (m/z) values estimated by considering the peaks
in all spectra in Peaks, a cell array of peak lists, where each element
corresponds to a spectrum or retention time. It then aligns the peaks
in each spectrum to the values in CMZ, creating AlignedPeaks, a cell
array of aligned peak lists.

[CMZ, AlignedPeaks] = mspalign(Peaks, ...'PropertyName',
PropertyValue, ...) calls mspalign with optional properties that
use property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property
value pairs are as follows:

[CMZ, AlignedPeaks] = mspalign(Peaks, ...'Quantile',
QuantileValue, ...) determines which peaks are selected by the
estimation method to create CMZ, the vector of common m/z values.
Choices are a scalar between 0 and 1. Default is 0.95.

[CMZ, AlignedPeaks] = mspalign(Peaks,
...'EstimationMethod', EstimationMethodValue,
...) specifies the method used to estimate CMZ, the vector of common
mass/charge (m/z) values. Choices are:

• histogram — Default method. Peak locations are clustered using a
kernel density estimation approach. The peak ion intensity is used
as a weighting factor. The center of all the clusters conform to the
CMZ vector.

• regression — Takes a sample of the distances between observed
significant peaks and regresses the inter-peak distance to create the
CMZ vector with similar inter-element distances.

[CMZ, AlignedPeaks] = mspalign(Peaks,
...'CorrectionMethod', CorrectionMethodValue,
...) specifies the method used to align each peak list to the CMZ vector.
Choices are:

2-483

mspalign

• nearest-neighbor — Default method. For each common peak in the
CMZ vector, its counterpart in each peak list is the peak that is closest
to the common peak’s m/z value.

• shortest-path — For each common peak in the CMZ vector, its
counterpart in each peak list is selected using the shortest path
algorithm.

Examples 1 Load a MAT file, included with Bioinformatics Toolbox, which
contains liquid chromatography/mass spectrometry (LC/MS) data
variables, including peaks and ret_time. peaks is a cell array of
peak lists, where each element is a two-column matrix of m/z values
and ion intensity values, and each element corresponds to a spectrum
or retention time. ret_time is a column vector of retention times
associated with the LC/MS data set.

load lcmsdata

2 Resample the unaligned data and display it in a heat map and dot
plot.

[MZ,Y] = msppresample(peaks,5000);
msheatmap(MZ,ret_time,log(Y))

2-484

mspalign

msdotplot(peaks,ret_time)

2-485

mspalign

3 Align the peak lists from the mass spectra using the default
estimation and correction methods.

[CMZ, aligned_peaks] = mspalign(peaks);

4 Resample the unaligned data and display it in a heat map and dot
plot.

[MZ2,Y2] = msppresample(aligned_peaks,5000);
msheatmap(MZ2,ret_time,log(Y2))

2-486

mspalign

msdotplot(aligned_peaks,ret_time)

2-487

mspalign

5 Link the axes of the two heat plots and zoom in to observe the detail.

linkaxes(findobj(0,'Tag','MSHeatMap'))
axis([570 590 3750 3900])

2-488

mspalign

2-489

mspalign

References [1] Jeffries, N. (2005) Algorithms for alignment of mass spectrometry
proteomic data. Bioinfomatics 21:14, 3066–3073.

[2] Purvine, S., Kolker, N., and Kolker, E. (2004) Spectral Quality
Assessment for High-Throughput Tandem Mass Spectrometry
Proteomics. OMICS: A Journal of Integrative Biology 8:3, 255–265.

See Also Bioinformatics Toolbox functions: msalign, msdotplot, msheatmap,
mspeaks , msppresample, mzxml2peaks

2-490

mspeaks

Purpose Convert raw mass spectrometry data to peak list (centroided data)

Syntax Peaks = mspeaks(MZ, Intensities)
Peaks = mspeaks(MZ, Intensities, ...'Base', BaseValue, ...)
Peaks = mspeaks(MZ, Intensities, ...'Levels', LevelsValue,

...)
Peaks = mspeaks(MZ, Intensities, ...'NoiseEstimator',

NoiseEstimatorValue, ...)
Peaks = mspeaks(MZ, Intensities, ...'Multiplier',

MultiplierValue, ...)
Peaks = mspeaks(MZ, Intensities, ...'Denoising',

DenoisingValue, ...)
Peaks = mspeaks(MZ, Intensities, ...'PeakLocation',

PeakLocationValue, ...)
Peaks = mspeaks(MZ, Intensities, ...'FWHH_Filter',

FWHH_FilterValue, ...)
Peaks = mspeaks(MZ, Intensities,
...'OverSegmentation_Filter',

OverSegmentation_FilterValue, ...)
Peaks = mspeaks(MZ, Intensities, ...'Height_Filter',

Height_FilterValue, ...)
Peaks = mspeaks(MZ, Intensities, ...'ShowPlot',

ShowPlotValue, ...)

2-491

mspeaks

Arguments
MZ Vector of mass/charge (m/z) values

for a set of spectra. The number
of elements in the vector equals n
or the number of rows in matrix
Intensities.

Intensities Matrix of intensity values for a set
of mass spectra that share the same
mass/charge (m/z) range. Each
row corresponds to an m/z value,
and each column corresponds to a
spectrum or retention time. The
number of rows equals n or the
number of elements in vector MZ.

BaseValue An integer between 2 and 20 that
specifies the wavelet base. Default
is 4.

LevelsValue An integer between 1 and 12 that
specifies the number of levels for
the wavelet decomposition. Default
is 10.

2-492

mspeaks

NoiseEstimatorValue String or scalar that specifies the
method to estimate the threshold, T,
to filter out noisy components in the
first high-band decomposition (y_h).
Choices are:

• mad — Default. Median absolute
deviation, which calculates T =
sqrt(2*log(n))*mad(y_h) /
0.6745, where n = the number of
rows in the Intensities matrix.

• std — Standard deviation, which
calculates T = std(y_h).

• A positive real value.

MultiplierValue A positive real value that specifies
the threshold multiplier constant.
Default is 1.0.

DenoisingValue Controls the use of wavelet
denoising to smooth the signal.
Choices are true (default) or false.

Note If your data has previously
been smoothed, for example, with
the mslowess or mssgolay function,
it is not necessary to use wavelet
denoising. Set this property to
false.

2-493

mspeaks

PeakLocationValue Value that specifies the proportion
of the peak height that selects the
points used to compute the centroid
mass of the respective peak. The
value must be ≥ 0 and ≤ 1. Default
is 1.0.

FWHH_FilterValue Positive real value that specifies the
minimum full width at half height
(FWHH), in m/z units, for reported
peaks. Peaks with FWHH below
this value are not included in the
output list Peaks. Default is 0.

OverSegmentation_FilterValuePositive real value that specifies
the minimum distance, in m/z
units, between neighboring peaks.
When the signal is not smoothed
appropriately, multiple maxima
can appear to represent the same
peak. By increasing this filter value,
oversegmented peaks are joined into
a single peak. Default is 0.

2-494

mspeaks

Height_FilterValue Positive real value that specifies the
minimum height for reported peaks.
Default is 0.

ShowPlotValue Controls the display of a plot of
the original and the smoothed
signal, with the peaks included in
the output matrix Peaks marked.
Choices are true, false, or I,
an integer specifying the index of
a spectrum in Intensities. If
set to true, the first spectrum in
Intensities is plotted. Default is:

• false — When return values are
specified.

• true — When return values are
not specified.

Return
Values

Peaks Two-column matrix where each
row corresponds to a peak. The
first column contains mass/charge
(m/z) values, and the second column
contains ion intensity values.

Description Peaks = mspeaks(MZ, Intensities) finds relevant peaks in raw mass
spectrometry data, and creates Peaks, a two-column matrix, containing
the m/z value and ion intensity for each peak.

mspeaks finds peaks by first smoothing the signal using undecimated
wavelet transform with Daubechies coefficients, then assigning peak
locations, and lastly, eliminating peaks that do not satisfy specified
criteria.

Peaks = mspeaks(MZ, Intensities, ...'PropertyName',
PropertyValue, ...) calls mspeaks with optional properties that

2-495

mspeaks

use property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property
value pairs are as follows:

Peaks = mspeaks(MZ, Intensities, ...'Base', BaseValue, ...)
specifies the wavelet base. BaseValue must be an integer between 2
and 20. Default is 4.

Peaks = mspeaks(MZ, Intensities, ...'Levels', LevelsValue,
...) specifies the number of levels for the wavelet decomposition.
LevelsValue must be an integer between 1 and 12. Default is 10.

Peaks = mspeaks(MZ, Intensities, ...'NoiseEstimator',
NoiseEstimatorValue, ...) specifies the method to estimate the
threshold, T, to filter out noisy components in the first high-band
decomposition (y_h). Choices are:

• mad — Default. Median absolute deviation, which calculates T =
sqrt(2*log(n))*mad(y_h) / 0.6745, where n = the number of rows
in the Intensities matrix.

• std — Standard deviation, which calculates T = std(y_h).

• A positive real value.

Peaks = mspeaks(MZ, Intensities, ...'Multiplier',
MultiplierValue, ...) specifies the threshold multiplier constant.
MultiplierValue must be a positive real value. Default is 1.0.

Peaks = mspeaks(MZ, Intensities, ...'Denoising',
DenoisingValue, ...) controls the use of wavelet denoising to smooth
the signal. Choices are true (default) or false.

2-496

mspeaks

Note If your data has previously been smoothed, for example, with
the mslowess or mssgolay function, it is not necessary to use wavelet
denoising. Set this property to false.

Peaks = mspeaks(MZ, Intensities, ...'PeakLocation',
PeakLocationValue, ...) specifies the proportion of the peak height
that selects the points used to compute the centroid mass of the
respective peak. PeakLocationValue must be a value ≥ 0 and ≤ 1.
Default is 1.0.

Note When PeakLocationValue = 1.0, the peak location is exactly at
the maximum of the peak, while when PeakLocationValue = 0, the
peak location is computed with all the points from the closest minimum
to the left of the peak to the closest minimum to the right of the peak.

Peaks = mspeaks(MZ, Intensities, ...'FWHH_Filter',
FWHH_FilterValue, ...) specifies the minimum full width at
half height (FWHH), in m/z units, for reported peaks. Peaks with
FWHH below this value are not included in the output list Peaks.
FWHH_FilterValue must be a positive real value. Default is 0.

Peaks = mspeaks(MZ, Intensities,
...'OverSegmentation_Filter', OverSegmentation_FilterValue,
...) specifies the minimum distance, in m/z units, between
neighboring peaks. When the signal is not smoothed appropriately,
multiple maxima can appear to represent the same peak. By increasing
this filter value, oversegmented peaks are joined into a single peak.
OverSegmentation_FilterValue must be a positive real value.
Default is 0.

Peaks = mspeaks(MZ, Intensities, ...'Height_Filter',
Height_FilterValue, ...) specifies the minimum height for reported

2-497

mspeaks

peaks. Peaks with heights below this value are not included in the
output list Peaks. Height_FilterValue must be a positive real value.
Default is 0.

Peaks = mspeaks(MZ, Intensities, ...'ShowPlot',
ShowPlotValue, ...) controls the display of a plot of the original and
the smoothed signal, with the peaks included in the output matrix
Peaks marked. Choices are true, false, or I, an integer specifying the
index of a spectrum in Intensities. If set to true, the first spectrum
in Intensities is plotted. Default is:

• false — When return values are specified.

• true — When return values are not specified.

Examples 1 Load a MAT file, included with Bioinformatics Toolbox, which
contains mass spectrometry data variables, including MZ_lo_res, a
vector of m/z values for a set of spectra, and Y_lo_res, a matrix of
intensity values for a set of mass spectra that share the same m/z
range.

load sample_lo_res

2 Adjust the baseline of the eight spectra stored in Y_lo_res.

YB = msbackadj(MZ_lo_res,Y_lo_res);

3 Convert the raw mass spectrometry data to a peak list by finding the
relevant peaks in each spectrum.

P = mspeaks(MZ_lo_res,YB);

4 Plot the third spectrum in YB, the matrix of baseline-corrected
intensity values, with the detected peaks marked.

P = mspeaks(MZ_lo_res,YB,'SHOWPLOT',3);

2-498

mspeaks

5 Smooth the signal using the mslowess function. Then convert the
smoothed data to a peak list by finding relevant peaks and plot the
third spectrum.

YS = mslowess(MZ_lo_res,YB,'SHOWPLOT',3);

2-499

mspeaks

P = mspeaks(MZ_lo_res,YS,'DENOISING',false,'SHOWPLOT',3);

2-500

mspeaks

6 Use the cellfun function to remove all peaks with m/z values less
than 2000 from the eight peaks lists in output P. Then plot the peaks
of the third spectrum (in red) over its smoothed signal (in blue).

Q = cellfun(@(p) p(p(:,1)>2000,:),P,'UniformOutput',false);
figure
plot(MZ_lo_res,YS(:,3),'b',Q{3}(:,1),Q{3}(:,2),'rx')
xlabel('Mass/Charge (M/Z)')
ylabel('Relative Intensity')
axis([0 20000 -5 95])

2-501

mspeaks

References [1] Morris, J.S., Coombes, K.R., Koomen, J., Baggerly, K.A., and
Kobayash, R. (2005) Feature extraction and quantification for mass
spectrometry in biomedical applications using the mean spectrum.
Bioinfomatics 21:9, 1764–1775.

[2] Yasui, Y., Pepe, M., Thompson, M.L., Adam, B.L., Wright, G.L.,
Qu, Y., Potter, J.D., Winget, M., Thornquist, M., and Feng, Z. (2003)
A data-analytic strategy for protein biomarker discovery: profiling of

2-502

mspeaks

high-dimensional proteomic data for cancer detection. Biostatistics
4:3, 449–463.

[3] Donoho, D.L., and Johnstone, I.M. (1995) Adapting to unknown
smoothness via wavelet shrinkage. J. Am. Statist. Asso. 90, 1200–1224.

[4] Strang, G., and Nguyen, T. (1996) Wavelets and Filter Banks
(Wellesley: Cambridge Press).

[5] Coombes, K.R., Tsavachidis, S., Morris, J.S., Baggerly, K.A.,
Hung, M.C., and Kuerer, H.M. (2005) Improved peak detection
and quantification of mass spectrometry data acquired from
surface-enhanced laser desorption and ionization by denoising spectra
with the undecimated discrete wavelet transform. Proteomics 5(16),
4107–4117.

See Also Bioinformatics Toolbox functions: msbackadj, msdotplot, mslowess,
mspalign, msppresample, mssgolay

2-503

msppresample

Purpose Resample mass spectrometry signal while preserving peaks

Syntax [MZ, Intensities] = msppresample(Peaks, N)
[MZ, Intensities] = msppresample(Peaks, N,
...'Range', RangeValue, ...)
[MZ, Intensities] = msppresample(Peaks, N, ...'FWHH',

FWHHValue, ...)
[MZ, Intensities] = msppresample(Peaks, N, ...'ShowPlot',

ShowPlotValue, ...)

Arguments Peaks Either of the following:
• Two-column matrix, where the first column

contains mass/charge (m/z) values and the second
column contains ion intensity values.

• Cell array of peak lists, where each element
is a two-column matrix of m/z values and ion
intensity values, and each element corresponds to
a spectrum or retention time.

Note You can use the mzxml2peaks function or the
mspeaks function to create the Peaks matrix or cell
array.

N Integer specifying the number of equally spaced
points (m/z values) in the resampled signal.

RangeValue 1-by-2 vector specifying the minimum and maximum
m/z values for the output matrix Intensities.
RangeValue must be within [min(inputMZ)
max(inputMZ)], where inputMZ is the concatenated
m/z values from the input Peaks. Default is the full
range [min(inputMZ) max(inputMZ)].

2-504

msppresample

FWHHValue Value that specifies the full width at half height
(FWHH) in m/z units. The FWHH is used to convert
each peak to a Gaussian shaped curve. Default
is median(diff(inputMZ))/2, where inputMZ is
the concatenated m/z values from the input Peaks.
The default is a rough approximation of resolution
observed in the input data, Peaks.

Tip To ensure that the resolution of the peaks
is preserved, set FWHHValue to half the distance
between the two peaks of interest that are closest to
each other.

ShowPlotValue Controls the display of a plot of an original and
resampled spectrum. Choices are true, false, or
I, an integer specifying the index of a spectrum in
Intensities. If set to true, the first spectrum in
Intensities is plotted. Default is:

• false — When return values are specified.

• true — When return values are not specified.

Return
Values

MZ Vector of equally spaced, common mass/charge (m/z)
values for a set of spectra. The number of elements in
the vector equals N or the number of rows in matrix
Intensities.

Intensities Matrix of reconstructed intensity values for a set of
mass spectra that share the same mass/charge (m/z)
range. Each row corresponds to an m/z value, and
each column corresponds to a spectrum or retention
time. The number of rows equals N or the number
of elements in vector MZ.

2-505

msppresample

Description [MZ, Intensities] = msppresample(Peaks, N) resamples Peaks,
a mass spectrometry peak list, by converting centroided peaks to a
semicontinuous, raw signal that preserves peak information. The
resampled signal has N equally spaced points. Output MZ is a vector of
N elements specifying the equally spaced, common m/z values for the
spectra. Output Intensities is a matrix of reconstructed intensity
values for a set of mass spectra that share the same m/z range. Each
row corresponds to an m/z value, and each column corresponds to a
spectrum or retention time. The number of rows equals N.

msppresample uses a Gaussian kernel to reconstruct the signal. The ion
intensity at any given m/z value is taken from the maximum intensity
of any contributing (overlapping) peaks.

Tip msppresample is useful to prepare a set of spectra for imaging
functions such as msheatmap and preprocessing functions such as
msbackadj and msnorm.

[MZ, Intensities] = msppresample(Peaks, N,
... 'PropertyName', PropertyValue, ...) calls msppresample
with optional properties that use property name/property value pairs.
You can specify one or more properties in any order. Each PropertyName
must be enclosed in single quotation marks and is case insensitive.
These property name/property value pairs are as follows:

[MZ, Intensities] = msppresample(Peaks, N, ...'Range',
RangeValue, ...) specifies an m/z range for the output matrix
Intensities using the minimum and maximum m/z values
specified in the 1-by-2 vector RangeValue. RangeValue must be
within [min(inputMZ) max(inputMZ)], where inputMZ is the
concatenated m/z values from the input Peaks. Default is the full range
[min(inputMZ) max(inputMZ)]

[MZ, Intensities] = msppresample(Peaks, N,
...'FWHH', FWHHValue, ...) sets the full width at half
height (FWHH) in m/z units. The FWHH is used to convert each peak

2-506

msppresample

to a Gaussian shaped curve. Default is median(diff(inputMZ))/2,
where inputMZ is the concatenated m/z values from the input Peaks.
The default is a rough approximation of resolution observed in the
input data, Peaks.

Tip To ensure that the resolution of the peaks is preserved, set
FWHHValue to half the distance between the two peaks of interest that
are closest to each other.

[MZ, Intensities] = msppresample(Peaks, N,
...'ShowPlot', ShowPlotValue, ...) controls the display
of a plot of an original and resampled spectrum. Choices are
true, false, or I, an integer specifying the index of a spectrum in
Intensities. If set to true, the first spectrum in Intensities is
plotted. Default is:

• false — When return values are specified.

• true — When return values are not specified.

Examples 1 Load a MAT file, included with Bioinformatics Toolbox, which
contains liquid chromatography/mass spectrometry (LC/MS) data
variables, including peaks, a cell array of peak lists, where each
element is a two-column matrix of m/z values and ion intensity
values, and each element corresponds to a spectrum or retention time.

load lcmsdata

2 Resample the data, specifying 5000 m/z values in the resampled
signal. Then create a heat map of the LC/MS data.

[MZ,Y] = msppresample(peaks,5000);
msheatmap(MZ,ret_time,log(Y))

2-507

msppresample

3 Plot the reconstructed profile spectra between two retention times.

figure
t1 = 3370;
t2 = 3390;
h = find(ret_time>t1 & ret_time<t2);
[MZ,Y] = msppresample(peaks(h),10000);
plot3(repmat(MZ,1,numel(h)),repmat(ret_time(h)',10000,1),Y)
xlabel('Mass/Charge (M/Z)')
ylabel('Retention Time')

2-508

msppresample

zlabel('Relative Intensity')

4 Resample the data to plot the Total Ion Chromatogram (TIC).

figure
[MZ,Y] = msppresample(peaks,5000);
plot(ret_time,sum(Y))
title('Total Ion Chromatogram (TIC)')
xlabel('Retention Time')
ylabel('Relative Intensity')

2-509

msppresample

5 Resample the data to plot the Extracted Ion Chromatogram (XIC) in
the 450 to 500 m/z range.

figure
[MZ,Y] = msppresample(peaks,5000,'Range',[450 500]);
plot(ret_time,sum(Y))
title('Extracted Ion Chromatogram (XIC) from 450 to 500 M/Z')
xlabel('Retention Time')
ylabel('Relative Intensity')

2-510

msppresample

See Also Bioinformatics Toolbox functions: msdotplot, mspeaks, mspalign,
msresample, mzxml2peaks, mzxmlread

2-511

msresample

Purpose Resample mass spectrometry signal

Syntax [MZout, Yout] = msresample(MZ, Y, N)
msresample(..., 'PropertyName', PropertyValue,...)
msresample(..., 'Uniform', UniformValue)
msresample(..., 'Range', RangeValue)
msresample(..., 'Missing', MissingValue)
msresample(..., 'Window', WindowValue)
msresample(..., 'Cutoff', CutoffValue)
msresample(..., 'ShowPlot', ShowPlotValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

N Total number of samples.

Description [MZout, Yout] = msresample(MZ, Y, N) resamples a raw mass
spectrum (Y). The output spectrum will have N samples with a spacing
that increases linearly within the range [min(MZ) max(MZ)]. MZ can be
a linear or a quadratic function of its index. When input arguments are
set such that down-sampling takes place, msresample applies a lowpass
filter before resampling to minimize aliasing.

For the antialias filter, msresample uses a linear-phase FIR filter with
a least-squares error minimization. The cu-off frequency is set by the
largest down-sampling ratio when comparing the same regions in the
MZ and MZout vectors.

Note msresample is particularly useful when you have spectra with
different mass/charge vectors and you want to match the scales.

2-512

msresample

msresample(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

msresample(..., 'Uniform', UniformValue), when UniformValue is
true, forces the vector MZ to be uniformly spaced. The default value is
false.

msresample(..., 'Range', RangeValue) specifies a 1-by-2 vector
with the mass/charge range for the output spectrum (Yout). RangeValue
must be within [min(MZ) max(MZ)]. The default value is the full range
[min(MZ) max(MZ)].

msresample(..., 'Missing', MissingValue), when MissingValue is
true, analyzes the mass/charge vector (MZ) for dropped samples. The
default value is false. If the down-sample factor is large, checking
for dropped samples might not be worth the extra computing time.
Dropped samples can only be recovered if the original MZ values follow a
linear or a quadratic function of the MZ vector index.

msresample(..., 'Window', WindowValue) specifies the window used
when calculating parameters for the lowpass filter. Enter 'Flattop',
'Blackman', 'Hamming’, or 'Hanning'. The default value is 'Flattop'.

msresample(..., 'Cutoff', CutoffValue) specifies the cutoff
frequency. Enter a scalar value between 0 and 1 (Nyquist frequency
or half the sampling frequency). By default, msresample estimates
the cutoff value by inspecting the mass/charge vectors (MZ, MZout).
However, the cutoff frequency might be underestimated if MZ has
anomalies.

msresample(..., 'ShowPlot', ShowPlotValue) plots the original
and the resampled spectrum. When msresample is called without
output arguments, the spectra are plotted unless ShowPlotValue is
false. When ShowPlotValue is true, only the first spectrum in Y is
plotted. ShowPlotValue can also contain an index to one of the spectra
in Y.

Examples 1 Load mass spectrometry data and extract m/z and intensity value
vectors

2-513

msresample

load sample_hi_res;
mz = MZ_hi_res;
y = Y_hi_res;

2 Plot original data to a lower resolution.

plot(mz, y, '.')

MATLAB draws a figure.

3 Resample data

[mz1,y1] = msresample(mz, y, 10000, 'range',[2000 max(mz)]);

4 Plot resampled data

plot(mz1,y1,'.')

MATLAB draws a figure with the down sampled data.

2-514

msresample

See Also Bioinformatics Toolbox functions: msalign, msbackadj, msheatmap,
mslowess, msnorm, msppresample, mssgolay, msviewer

2-515

mssgolay

Purpose Smooth mass spectrum with least-squares polynomial

Syntax Yout = mssgolay(MZ, Y)
mssgolay(..., 'PropertyName', PropertyValue,...)
mssgolay(..., 'Span', SpanValue)
mssgolay(..., 'Degree', DegreeValue)
mssgolay(..., 'ShowPlot', ShowPlotValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description Yout = mssgolay(MZ, Y) smoothes a raw mass spectrum (Y) using a
least squares digital polynomial filter (Savitzky and Golay filters). The
default span or frame is 15 samples.

mssgolay(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

mssgolay(..., 'Span', SpanValue) modifies the frame size for the
smoothing function. If SpanValue is greater than 1, the window is the
size of SpanValue in samples independent of the MZ vector. Higher
values will smooth the signal more with an increase in computation
time. If SpanValue is less than 1, the window size is a fraction of the
number of points in the data (MZ). For example, if SpanValue is 0.05,
the window size is equal to 5% of the number of points in MZ.

2-516

mssgolay

Note 1) The original algorithm by Savitzky and Golay assumes a
uniformly spaced mass/charge vector (MZ), while mssgolay also allows
one that is not uniformly spaced. Therefore, the sliding frame for
smoothing is centered using the closest samples in terms of the MZ value
and not in terms of the MZ index.

2) When the vector MZ does not have repeated values or NaNs, the
algorithm is approximately twice as fast.

3) When the vector MZ is evenly spaced, the least-squares fitting
is performed once so that the spectrum is filtered with the same
coefficients, and the speed of the algorithm increases considerably.

4) If the vector MZ is evenly spaced and SpanValue is even, Span is
incriminated by 1 to include both edge samples in the frame.

mssgolay(..., 'Degree', DegreeValue) specifies the degree of the
polynomial (DegreeValue) fitted to the points in the moving frame. The
default value is 2. DegreeValue must be smaller than SpanValue.

mssgolay(..., 'ShowPlot', ShowPlotValue) plots smoothed
spectra over the original. When mssgolay is called without output
arguments, the spectra are plotted unless ShowPlotValue is false.
When ShowPlotValue is true, only the first spectrum in Y is plotted.
ShowPlotValue can also contain an index to one of the spectra in Y.

Examples load sample_lo_res
YS = mssgolay(MZ_low_res, Y_low_res(:,1));
plot(MZ,[Y(:,1) YS])

See Also Bioinformatics Toolbox functions msalign, msbackadj, msheatmap,
mslowess, msnorm, mspeaks, msresample, msviewer

2-517

msviewer

Purpose Explore mass spectrum or set of mass spectra

Syntax msviewer(MZ, Y)
msviewer(..., 'Markers', MarkersValue)
msviewer(..., 'Group', GroupValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description msviewer(MZ, Y) creates a GUI to display and explore a mass spectrum
(Y).

msviewer(..., 'Markers', MarkersValue)specifies a list of marker
positions from the mass/charge vector (MZ) for exploration and easy
navigation. Enter a column vector with MZ values.

msviewer(..., 'Group', GroupValue) specifies a class label for
every spectrum with a different color for every class. Enter a column
vector of size [numSpectra x 1] with integers. The default value is
[numSpectra].

MSViewer GUI features include the following:

• Plot mass spectra. The spectra are plotted with different colors
according to their class labels.

• An overview displays a full spectrum, and a box indicates the region
that is currently displayed in the main window.

• Five different zoom in options, one zoom out option, and a reset view
option resize the spectrum.

• Add/focus/move/delete marker operations

2-518

msviewer

• Import/Export markers from/to MATLAB workspace

• Print and preview the spectra plot

• Print the spectra plot to a MATLAB figure window

MSViewer has five components:

• Menu bar: File, Tools, Window, and Help

• Toolbar: Zoom XY, Zoom X, Zoom Y, Reset view, Zoom out, and Help

• Main window: display the spectra

• Overview window: display the overview of a full spectrum (the
average of all spectra in display)

• Marker control panel: a list of markers, Add marker, Delete marker,
up and down buttons

Examples 1 Load and plot sample data

load sample_lo_res
msviewer(MZ_lo_res, Y_lo_res)

2 Add a marker by pointing to a mass peak, right-clicking, and then
clicking Add Marker.

3 From the File menu, select

• Import Markers from Workspace — Opens the Import Markers
From MATLAB Workspace dialog. The dialog should display a list
of double Mx1 or 1xM variables. If the selected variable is out of
range, the viewer displays an error message

• Export Markers to Workspace — Opens the Export Markers to
MATLAB Workspace dialog. You can enter a variable name for the
markers. All markers are saved. If there is no marker available,
this menu item should be disabled.

2-519

msviewer

• Print to Figure — Prints the spectra plot in the main display to a
MATLAB figure window

4 From the Tools menu, click

• Add Marker — Opens the Add Marker dialog. Enter an m/z
marker.

• Delete Marker — Removes the currently selected m/z marker
from the Markers (m/z) list.

• Next Marker or Previous Marker — Moves the selection up and
down the Markers (m/z) list.

• Zoom XY, Zoom X, Zoom Y, or Zoom Out — Changes the cursor
from an arrow to crosshairs. Left-click and drag a rectangle box
over an area and then release the mouse button. The display
zooms the area covered by the box.

5 Move the cursor to the range window at the bottom. Click and drag
the view box to a new location.

See Also Bioinformatics Toolbox functions msalign, msbackadj, mslowess,
msnorm, msheatmap, msresample, mssgolay

2-520

multialign

Purpose Align multiple sequences using progressive method

Syntax SeqsMultiAligned = multialign(Seqs)
SeqsMultiAligned = multialign(Seqs, Tree)
multialign(..., 'PropertyName', PropertyValue,...)
multialign(..., 'Weights', WeightsValue)
multialign(..., 'ScoringMatrix', ScoringMatrixValue)
multialign(..., 'SMInterp', SMInterpValue)
multialign(..., 'GapOpen', GapOpenValue)
multialign(..., 'ExtendGap', ExtendGapValue)
multialign(..., 'DelayCutoff', DelayCutoffValue)
multialign(..., 'JobManager', JobManagerValue)
multialign(..., 'WaitInQueue', WaitInQueueValue)
multialign(..., 'Verbose', VerboseValue)
multialign(..., 'ExistingGapAdjust',
ExistingGapAdjustValue)
multialign(..., 'TerminalGapAdjust',
TerminalGapAdjustValue)

Arguments Seqs Vector of structures with the fields
'Sequence' for the residues and
'Header' or 'Name' for the labels.

Seqs may also be a cell array of strings
or a char array.

SeqsMultiAligned Vector of structures (same as Seqs) but
with the field 'Sequence' updated with
the alignment.

When Seqs is a cell or char array,
SeqsMultiAligned is a char array with
the output alignment following the
same order as the input.

2-521

multialign

Tree Phylogenetic tree calculated with
either of the functions seqlinkage or
seqneighjoin.

WeightsValue Property to select the sequence
weighting method. Enter either 'THG'
(default) or 'equal'.

ScoringMatrixValue Property to select or specify the
scoring matrix. Enter an [MxM]
matrix or [MxMxN] array of matrixes
withN user-defined scoring matrices.
ScoringMatrixValuemay also be a cell
array of strings with matrix names.The
default is the BLOSUM80 to BLOSUM30
series for amino acids or a fixed matrix
NUC44 for nucleotides. When passing
your own series of scoring matrices
make sure all of them share the same
scale.

SMInterpValue Property to specify whether linear
interpolation of the scoring matrices is
on or off. When false, scoring matrix is
assigned to a fixed range depending on
the distances between the two profiles
(or sequences) being aligned. Default
is true.

GapOpenValue Scalar or a function specified using @. If
you enter a function,multialign passes
four values to the function: the average
score for two matched residues (sm),
the average score for two mismatched
residues (sx), and, the length of both
profiles or sequences (len1, len2).
Default is @(sm,sx,len1,len2) 5*sm.

2-522

multialign

ExtendGapValue Scalar or a function specified using @.
IF you enter a function, multiialign
passes four values to the function:
the average score for two matched
residues (sm), the average score
for two mismatched residues (sx),
and the length of both profiles or
sequences (len1, len2). Default is
@(sm,sx,len1,len2) sm/4.

DelayCutoffValue Property to specify the threshold delay
of divergent sequences. The default is
unity where sequences with the closest
sequence farther than the median
distance are delayed.

JobManagerValue JobManager object representing
an available distributed MATLAB
resource. Enter a jobmanager object
returned by the Distributed Computing
Toolbox function findResource.

WaitInQueueValue Property to control waiting for a
distributed MATLAB resource to be
available. Enter either true or false.
The default value is false.

VerboseValue Property to control displaying the
sequences with sequence information.
Default value is false.

ExistingGagAdjustValue Property to control automatic
adjustment based on existing gaps.
Default value is true.

TerminalGapAdjustValue Property to adjusts the penalty for
opening a gap at the ends of the
sequence. Default value is false.

2-523

multialign

Description SeqsMultiAligned = multialign(Seqs) performs a progressive
multiple alignment for a set of sequences (Seqs). Pair-wise distances
between sequences are computed after pair-wise alignment with the
Gonnet scoring matrix and then by counting the proportion of sites at
which each pair of sequences are different (ignoring gaps). The guide
tree is calculated by the neighbor-joining method assuming equal
variance and independence of evolutionary distance estimates.

SeqsMultiAligned = multialign(Seqs, Tree) uses a tree (Tree) as
a guide for the progressive alignment. The sequences (Seqs) should
have the same order as the leaves in the tree (Tree) or use a field
('Header' or 'Name') to identify the sequences.

multialign(..., 'PropertyName', PropertyValue,...) enters
optional arguments as property name/value pairs.

multialign(..., 'Weights', WeightsValue) selects the sequence
weighting method. Weights emphasize highly divergent sequences by
scaling the scoring matrix and gap penalties. Closer sequences receive
smaller weights.

Values of the property Weights:

• 'THG'(default) — Thompson-Higgins-Gibson method using the
phylogenetic tree branch distances weighted by their thickness.

• 'equal' — Assigns same weight to every sequence.

multialign(..., 'ScoringMatrix', ScoringMatrixValue)
selects the scoring matrix (ScoringMatrixValue) for the progressive
alignment. Match and mismatch scores are interpolated from the
series of scoring matrices by considering the distances between the
two profiles or sequences being aligned. The first matrix corresponds
to the smallest distance and the last matrix to the largest distance.
Intermediate distances are calculated using linear interpolation.

multialign(..., 'SMInterp', SMInterpValue), when
SMInterpValue is false, turns off the linear interpolation of the
scoring matrices. Instead, each supplied scoring matrix is assigned to

2-524

multialign

a fixed range depending on the distances between the two profiles or
sequences being aligned.

multialign(..., 'GapOpen', GapOpenValue) specifies the initial
penalty for opening a gap.

multialign(..., 'ExtendGap', ExtendGapValue) specifies the
initial penalty for extending a gap.

multialign(..., 'DelayCutoff', DelayCutoffValue) specifies a
threshold to delay the alignment of divergent sequences whose closest
neighbor is farther than

(DelayCutoffValue) * (median patristic distance
between sequences)

multialign(..., 'JobManager', JobManagerValue) distributes
pair-wise alignments into a cluster of computers using Distributed
Computing Toolbox.

multialign(..., 'WaitInQueue', WaitInQueueValue) when
WaitInQueueValue is true, waits in the job manager queue for an
available worker. When WaitInQueueValue is false (default) and there
are no workers immediately available, multialign errors out. Use this
property with Distributed Computing Toolbox and the multialign
property WaitInQueue.

multialign(..., 'Verbose', VerboseValue), when VerboseValue is
true, turns on verbosity.

The remaining input optional arguments are analogous to the function
profalign and are used through every step of the progressive
alignment of profiles.

multialign(..., 'ExistingGapAdjust',
ExistingGapAdjustValue), if ExistingGapAdjustValue
is false, turns off the automatic adjustment based on existing gaps of
the position-specific penalties for opening a gap.

When ExistingGapAdjustValue is true, for every profile position,
profalign proportionally lowers the penalty for opening a gap toward

2-525

multialign

the penalty of extending a gap based on the proportion of gaps found in
the contiguous symbols and on the weight of the input profile.

multialign(..., 'TerminalGapAdjust',
TerminalGapAdjustValue), when TerminalGapAdjustValue is true,
adjusts the penalty for opening a gap at the ends of the sequence to
be equal to the penalty for extending a gap.

Example1 1 Align seven cellular tumor antigen p53 sequences.

p53 = fastaread('p53samples.txt')
ma = multialign(p53,'verbose',true)
showalignment(ma)

2-526

multialign

2 Use an UPGMA phylogenetic tree instead as a guiding tree.

dist = seqpdist(p53,'ScoringMatrix',gonnet);
tree = seqlinkage(dist,'UPGMA',p53)

Phylogenetic tree object with 7 leaves (6 branches)

3 Score the progressive alignment with the PAM family.

ma = multialign(p53,tree,'ScoringMatrix',...
{'pam150','pam200','pam250'})

showalignment(ma)

2-527

multialign

Example 2 1 Enter an array of sequences.

seqs = {'CACGTAACATCTC','ACGACGTAACATCTTCT','AAACGTAACATCTCGC'};

2 Promote terminations with gaps in the alignment.

multialign(seqs,'terminalGapAdjust',true)

ans =
--CACGTAACATCTC--
ACGACGTAACATCTTCT
-AAACGTAACATCTCGC

2-528

multialign

3 Compare alignment without termination gap adjustment.

multialign(seqs)

ans =
CA--CGTAACATCT--C
ACGACGTAACATCTTCT
AA-ACGTAACATCTCGC

See Also Bioinformatics Toolbox functions: hmmprofalign, multialignread,
nwalign, profalign, seqprofile, seqconsensus, seqneighjoin,
showalignment

2-529

multialignread

Purpose Read multiple-sequence alignment file

Syntax S = multialignread(File)
[Headers, Sequences] = multialignread(File)
multialignread(..., 'PropertyName', PropertyValue,...)
multialignread(..., 'IgnoreGaps', IgnoreGapsValue)

Arguments
File Multiple sequence alignment file (ASCII text

file). Enter a file name, a path and file name,
or a URL pointing to a file. File can also be a
MATLAB character array that contains the text
of a multiple sequence alignment file. You can
read common multiple alignment file types, such
as ClustalW (.aln) and GCG (.msf).

IgnoreGapsValue Property to control removing gap symbols.

Description S = multialignread(File) reads a multiple sequence alignment file.
The file contains multiple sequence lines that start with a sequence
header followed by an optional number (not used by multialignread)
and a section of the sequence. The multiple sequences are broken into
blocks with the same number of blocks for every sequence. (For an
example, type open aagag.aln.) The output S is a structure array
where S.Header contains the header information and S.Sequence
contains the amino acid or nucleotide sequences.

[Headers, Sequences] = multialignread(File) reads the file into
separate variables Headers and Sequences.

multialignread(..., 'PropertyName', PropertyValue,...)
defines optional properties using property name/value pairs.

multialignread(..., 'IgnoreGaps', IgnoreGapsValue), when
IgnoreGapsValue is true, removes any gap symbol ('-' or '.') from
the sequences. Default is false.

2-530

multialignread

Examples Read a multiple sequence alignment of the gag polyprotein for several
HIV strains.

gagaa = multialignread('aagag.aln')

gagaa =

1x16 struct array with fields:
Header
Sequence

See Also Bioinformatics Toolbox functions: fastaread, gethmmalignment,
multialign, seqconsensus, seqdisp, seqprofile

2-531

multialignviewer

Purpose Open viewer for multiple sequence alignments

Syntax multialignviewer(Alignment)
multialignviewer(..., 'PropertyName', PropertyValue,...)
multialignviewer(..., 'Alphabet', AlphabetValue)

Description The multialignviewer is an interactive graphical user interface (GUI)
for viewing multiple sequence alignments.

multialignviewer(Alignment) loads a group of previously multiple
aligned sequences into the viewer. Alignment is a structure with a field
Sequence, a character array, or a file name.

multialignviewer(..., 'PropertyName', PropertyValue,...)
defines optional properties using property name/value pairs.

multialignviewer(..., 'Alphabet', AlphabetValue) specifies
the alphabet type for the sequences . AlphabetValue can be 'AA'
for amino acids or 'NT' for nucleotides. The default value is 'AA'.
If AlphabetValue is not specified, multialignviewer guesses the
alphabet type.

Examples multialignviewer('aagag.aln')

See Also Bioinformatics Toolbox functions: fastaread, gethmmalignment,
multialign, multialignread, seqtool

2-532

mzxml2peaks

Purpose Convert mzXML structure to peak list

Syntax [Peaks, Times] = mzxml2peaks(mzXMLStruct)
[Peaks, Times] = mzxml2peaks(mzXMLStruct,
'Levels', LevelsValue)

Arguments
mzXMLStruct mzXML structure, such as one created by the

mzxmlread function. mzXMLStruct includes the
following fields:

• scan

• offset

• mzXML

LevelsValue Positive integer or vector of integers that specifies
the level(s) of spectra in mzXMLStruct to convert,
assuming the spectra are from tandem MS data sets.
Default is 1, which converts only the first-level spectra,
that is spectra containing precursor ions. Setting
LevelsValue to 2 converts only the second-level
spectra, which are the fragment spectra (created from
a precursor ion).

2-533

mzxml2peaks

Return
Values

Peaks Either of the following:
• Two-column matrix, where the first column contains

mass/charge (m/z) values and the second column
contains ion intensity values.

• Cell array of peak lists, where each element is a
two-column matrix of m/z values and ion intensity
values, and each element corresponds to a spectrum
or retention time.

Times Vector of retention times associated with a liquid
chromatography/mass spectrometry (LC/MS) or gas
chromatography/mass spectrometry (GC/MS) data set.
The number of elements in Times equals the number
of elements in Peaks.

Description [Peaks, Times] = mzxml2peaks(mzXMLStruct) extracts peak
information from mzXMLStruct, an mzXML structure, and creates
Peaks, a cell array of matrices containing mass/charge (m/z) values and
ion intensity values, and Times, a vector of retention times associated
with a liquid chromatography/mass spectrometry (LC/MS) or gas
chromatography/mass spectrometry (GC/MS) data set.

[Peaks, Times] = mzxml2peaks(mzXMLStruct,
'Levels', LevelsValue) specifies the level(s) of the spectra in
mzXMLStruct to convert, assuming the spectra are from tandem MS
data sets. Default is 1, which converts only the first-level spectra,
that is spectra containing precursor ions. Setting LevelsValue to 2
converts only the second-level spectra, which are the fragment spectra
(created from a precursor ion).

Examples 1 Use the mzxmlread function to read an mzXML file into MATLAB as
structure. Then extract the peak information of only the first-level
ions from the structure.

mzxml_struct = mzxmlread('results.mzxml');
[peaks,time] = mzxml2peaks(mzxml_struct);

2-534

mzxml2peaks

Note The file results.mzxml is not provided. Sample mzXML files
can be found at

http://sashimi.sourceforge.net/repository.html

2 Create a dotplot of the LC/MS data.

msdotplot(peaks,time)

See Also Bioinformatics Toolbox functions: msdotplot, mspalign, msppresample,
mzxmlread

2-535

http://sashimi.sourceforge.net/repository.html

mzxmlread

Purpose Read mzXML file into MATLAB as structure

Syntax mzXMLStruct = mzxmlread(File)

Arguments File String containing a file name, or a path and file name,
of an mzXML file that conforms to the mzXML 2.1
specification or earlier specifications.

If you specify only a file name, that file must be on the
MATLAB search path or in the current directory.

Return
Values

mzXMLStruct MATLAB structure containing information from an
mzXML file. It includes the following fields:

• scan — Structure array containing the data
pertaining to each individual scan, such as mass
spectrometry level, total ion current, polarity,
precursor mass (when it applies), and the spectrum
data.

• index — Structure containing indices to the
positions of scan elements in the XML document.

• mzXML — Structure containing:

- Information in the root element of the mzXML
schema, such as instrument details, experiment
details, and preprocessing method

- URLs pointing to schemas for the individual
scans

- Indexing approach

- Digital signature calculated for the current
instance of the document

2-536

http://sashimi.sourceforge.net/schema_revision/mzXML_2.1/Doc/mzXML_2.1_tutorial.pdf

mzxmlread

Description mzXMLStruct = mzxmlread(File) reads an mzXML file, File, and
then creates a MATLAB structure, mzXMLStruct.

File can be a file name, or a path and file name, of an mzXML file.
The file must conform to the mzXML 2.1 specification or earlier
specifications. You can view the mzXML 2.1 specification at:

http://sashimi.sourceforge.net/schema_revision/mzXML_2.1/Doc/mzXML_2.1_tutorial.pdf

mzXMLStruct includes the following fields.

Field Description

scan Structure array containing the data pertaining to each
individual scan, such as mass spectrometry level, total ion
current, polarity, precursor mass (when it applies), and
the spectrum data.

index Structure containing indices to the positions of scan
elements in the XML document.

mzXML Structure containing:

• Information in the root element of the mzXML schema,
such as instrument details, experiment details, and
preprocessing method

• URLs pointing to schemas for the individual scans

• Indexing approach

• Digital signature calculated for the current instance of
the document

2-537

http://sashimi.sourceforge.net/schema_revision/mzXML_2.1/Doc/mzXML_2.1_tutorial.pdf

mzxmlread

Tip If you receive any errors related to memory or Java heap space, try
increasing your Java heap space as described at:

http://www.mathworks.com/support/solutions/data/1-18I2C.html

Examples out = mzxmlread('results.mzxml');
% view a scan
m = out.scan(1).peaks.mz(1:2:end);
z = out.scan(1).peaks.mz(2:2:end);
bar(m,z)

Note The file results.mzxml is not provided. Sample mzXML files
can be found at:

• Open Proteomics Database

• Peptide Atlas Repository at the Institute for Systems Biology (ISB)

• The Sashimi Project

See Also Bioinformatics Toolbox functions: jcampread, mzxml2peaks

MATLAB function: xmlread

2-538

http://www.mathworks.com/support/solutions/data/1-18I2C.html
http://bioinformatics.icmb.utexas.edu/OPD/
http://www.peptideatlas.org/repository/
http://sashimi.sourceforge.net/repository.html

nmercount

Purpose Count number of n-mers in nucleotide or amino acid sequence

Syntax nmercount(Seq, Length)
nmercount(Seq, Length, C)

Arguments
Seq Nucleotide or amino acid sequence. Enter a

character string or a structure with the field
Sequence.

Length Length of n-mer to count. Enter an integer.

Description nmercount(Seq, Length) counts the number of n-mers or patterns
of a specific length in a sequence.

nmercount(Seq, Length, C) returns only the n-nmers with cardinality
at least C.

Examples Count the number of n-mers in an amino acid sequence and display
the first six rows in the cell array.

S = getgenpept('AAA59174','SequenceOnly',true)
nmers = nmercount(S,4);
nmers(1:6,:)

ans =
'apes' [2]
'dfrd' [2]
'eslk' [2]
'frdl' [2]
'gnys' [2]
'lkel' [2]

See Also Bioinformatics Toolbox functions: basecount, codoncount, dimercount

2-539

nt2aa

Purpose Convert nucleotide sequence to amino acid sequence

Syntax SeqAA = nt2aa(SeqNT)
SeqAA = nt2aa(..., 'Frame', FrameValue, ...)
SeqAA = nt2aa(..., 'GeneticCode', GeneticCodeValue, ...)
SeqAA = nt2aa(..., 'AlternativeStartCodons',

AlternativeStartCodonsValue, ...)

2-540

nt2aa

Arguments SeqNT Either of the following:
• String specifying a nucleotide

sequence

• MATLAB structure containing
the field Sequence

Valid characters include:

• A

• C

• G

• T

• U

• hyphen (-)

Note Hyphens are valid only
if the codon to which it belongs
represents a gap, that is, the
codon contains all hyphens.
Example: ACT---TGA

Tip Do not use a sequence with
hyphens if you specify 'all' for
FrameValue.

FrameValue Property to specify a reading frame.
Choices are 1, 2, 3, or 'all'. Default
is 1.

If FrameValue is 'all', then SeqAA
is a 3-by-1 cell array.

2-541

nt2aa

GeneticCodeValue Property to specify a genetic
code. Enter a Code Number or
a string with a Code Name from
the tableGenetic Code on page
2-542. If you use a Code Name,
you can truncate it to the first two
characters. Default is 1 or Standard.

AlternativeStartCodonsValue Property to control the translation of
alternative codons. Choices are true
or false. Default is true.

Genetic Code

Code
Number

Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

4 Mold, Protozoan, Coelenterate Mitochondrial,
and Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

6 Ciliate, Dasycladacean, and Hexamita Nuclear

9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid

12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

2-542

nt2aa

Code
Number

Code Name

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

Return
Values

SeqAA String specifying an amino acid
sequence.

Description SeqAA = nt2aa(SeqNT) converts a nucleotide sequence to an amino
acid sequence using the standard genetic code.

SeqAA = nt2aa(SeqNT, ...'PropertyName', PropertyValue, ...)
calls nt2aa with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case
insensitive. These property name/property value pairs are as follows:

SeqAA = nt2aa(..., 'Frame', FrameValue, ...) converts a
nucleotide sequence for a specific reading frame to an amino acid
sequence. Choices are 1, 2, 3, or 'all'. Default is 1. If FrameValue is
'all', then output SeqAA is a 3-by-1 cell array.

SeqAA = nt2aa(..., 'GeneticCode', GeneticCodeValue, ...)
converts a nucleotide sequence to an amino acid sequence using a
specific genetic code.

SeqAA = nt2aa(...,
'AlternativeStartCodons', AlternativeStartCodonsValue, ...)
controls the translation of alternative start codons. By default,
AlternativeStartCodonsValue is set to true, and if the first
codon of a sequence is a known alternative start codon, the
codon is translated to methionine.

2-543

nt2aa

If this option is set to false, then an alternative start codon at the start
of a sequence is translated to its corresponding amino acid in the genetic
code that you specify, which might not necessarily be methionine. For
example, in the human mitochondrial genetic code, AUA and AUU are
known to be alternative start codons.

For more details of alternative start codons, see

www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG1

Examples The following example converts the gene ND1 on the human
mitochondria genome to an amino acid sequence.

mitochondria = getgenbank('NC_001807', 'SequenceOnly', true)
ND1gene = mitochondria (3308:4264)
protein1 = nt2aa(ND1gene,'GeneticCode', 2)
protein2 = getgenpept('NP_536843', 'SequenceOnly', true)

The following example converts the gene ND2 on the human
mitochondria genome to an amino acid sequence. In this case, the first
codon is ATT, which is translated to M, while the following ATT codons
are converted to I. If you set 'AlternativeStartCodons' to false,
then the first codon ATT is translated to I, the corresponding amino acid
in the Vertebrate Mitochondrial genetic code.

mitochondria = getgenbank('NC_001807', 'SequenceOnly', true)
ND2gene = mitochondria (4471:5514)
protein1 = nt2aa(ND2gene, 'GeneticCode', 2)
protein2 = getgenpept('NP_536844', 'SequenceOnly', true)

See Also Bioinformatics Toolbox functions: aa2int, aminolookup, baselookup,
codonbias, dnds, dndsml, geneticcode, revgeneticcode, seqtool

2-544

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG1

nt2int

Purpose Convert nucleotide sequence from letter to integer representation

Syntax SeqInt = nt2int(SeqChar, 'PropertyName', PropertyValue)
nt2int(..., 'Unknown', UnknownValue)
nt2int(..., 'ACGTOnly', ACGTONlyValue)

Arguments
SeqChar Nucleotide sequence represented with letters.

Enter a character string from the table Mapping
Nucleotide Letters to Integers below. Integers
are arbitrarily assigned to IUB/IUPAC letters.
If the property ACGTOnly is true, you can only
enter the characters A, C, T, G, and U.

UnknownValue Property to select the integer for unknown
characters. Enter an integer. Maximum value is
255. Default value is 0.

ACGTOnlyValue Property to control the use of ambiguous
nucleotides. Enter either true or false. Default
value is false.

Mapping Nucleotide Letters to Integers

Base Code Base Code Base Code

Adenosine A—1 T, C
(pyrimidine)

Y—6 A, T, G (not
C)

D—12

Cytidine C—2 G, T (keto) K—7 A, T, C (not
G)

H—13

Guanine G—3 A, C (amino) M—8 A, G, C (not
T)

V—14

Thymidine T—4 G, C (strong) S—9 A, T, G, C (any) N—15

2-545

nt2int

Base Code Base Code Base Code

Uridine U—4 A, T (weak) W—10 Gap of
indeterminate
length

- —16

A, G
(purine)

R—5 T, G, C (not
A)

B—11 Unknown
(default)

*—0
and
≥17

Description SeqInt = nt2int(SeqChar, 'PropertyName', PropertyValue) converts
a character string of nucleotides to a 1-by-N array of integers using
the table Mapping Nucleotide Letters to Integers above. Unknown
characters (characters not in the table) are mapped to 0. Gaps
represented with hyphens are mapped to 16.

nt2int(..., 'Unknown', UnknownValue) defines the number used to
represent unknown nucleotides. The default value is 0.

nt2int(..., 'ACGTOnly', ACGTONlyValue) if ACGTOnly is true, the
ambiguous nucleotide characters (N, R, Y, K, M, S, W, B, D, H, and V) are
represented by the unknown nucleotide number.

Examples Convert a nucleotide sequence with letters to integers.

s = nt2int('ACTGCTAGC')

s =
1 2 4 3 2 4 1 3 2

See Also Bioinformatics Toolbox functions: aa2int, baselookup, int2aa, int2nt

2-546

ntdensity

Purpose Plot density of nucleotides along sequence

Syntax Density = ntdensity(SeqNT, 'PropertyName', PropertyValue)
ntdensity(..., 'Window', WindowValue)
[Density, HighCG] = ntdensity(..., 'CGThreshold',

CGThresholdValue)

Description ntdensity(SeqNT) plots the density of nucleotides A, T, C, G in sequence
SeqNT.

Density = ntdensity(SeqNT, 'PropertyName', PropertyValue) returns
a MATLAB structure with the density of nucleotides A, C, G, and T.

ntdensity(..., 'Window', WindowValue) uses a window of
length Window for the density calculation. The default value is
length(SeqNT)/20.

[Density, HighCG] = ntdensity(..., 'CGThreshold',
CGThresholdValue) returns indices for regions where the CG content of
SeqNT is greater than CGThreshold. The default value for CGThreshold
is 5.

Examples s = randseq(1000, 'alphabet', 'dna');
ndensity(s)

2-547

ntdensity

See Also Bioinformatics Toolbox functions basecount, codoncount, cpgisland,
dimercount

MATLAB function filter

2-548

nuc44

Purpose NUC44 scoring matrix for nucleotide sequences

Syntax ScoringMatrix = nuc44
[ScoringMatrix, MatrixInfo] = nuc44

Description ScoringMatrix = nuc44 returns the scoring matrix. The nuc44 scoring
matrix uses ambiguous nucleotide codes and probabilities rounded to
the nearest integer.

Scale = 0.277316

Expected score = -1.7495024, Entropy = 0.5164710 bits

Lowest score = -4, Highest score = 5

Order: A C G T R Y K M S W B D H V N

[ScoringMatrix, MatrixInfo] = nuc44 returns a structure with
information about the matrix with fields Name and Order.

2-549

num2goid

Purpose Convert numbers to Gene Ontology IDs

Syntax GOIDs = num2goid(X)

Description GOIDs = num2goid(X) converts the numbers in X to strings with Gene
Ontology IDs. IDs are a 7-digit number preceded by the prefix 'GO:'.

Examples Get the Gene Ontology IDs of the following numbers.

t = [5575 5622 5623 5737 5840 30529 43226 43228 ...
43229 43232 43234];

ids = num2goid(t)

See Also Bioinformatics Toolbox functions: geneont (object constructor),
goannotread

Bioinformatics Toolbox methods of geneont object: getancestors,
getdescendants, getmatrix, getrelatives

2-550

nwalign

Purpose Globally align two sequences using Needleman-Wunsch algorithm

Syntax Score = nwalign(Seq1,Seq2)
[Score, Alignment] = nwalign(Seq1,Seq2)
[Score, Alignment, Start] = nwalign(Seq1,Seq2)
... = nwalign(Seq1,Seq2, ...'Alphabet', AlphabetValue, ...)
... = nwalign(Seq1,Seq2, ...'ScoringMatrix',

ScoringMatrixValue, ...)
... = nwalign(Seq1,Seq2, ...'Scale', ScaleValue, ...)
... = nwalign(Seq1,Seq2, ...'GapOpen', GapOpenValue, ...)
... = nwalign(Seq1,Seq2, ...'ExtendGap',
ExtendGapValue, ...)
... = nwalign(Seq1,Seq2, ...'Showscore',
ShowscoreValue, ...)

Arguments Seq1, Seq2 Amino acid or nucleotide sequences. Enter
any of the following:
• Character string of letters representing

amino acids or nucleotides, such as returned
by int2aa or int2nt

• Vector of integers representing amino acids
or nucleotides, such as returned by aa2int
or nt2int

• Structure containing a Sequence field

Tip For help with letter and integer
representations of amino acids and
nucleotides, see Amino Acid Lookup on page
2-56 or Nucleotide Lookup Table on page 2-66.

AlphabetValue String specifying the type of sequence. Choices
are 'AA' (default) or 'NT'.

2-551

nwalign

ScoringMatrixValue String specifying the scoring matrix to use for
the global alignment. Choices for amino acid
sequences are:

• 'PAM40'

• 'PAM250'

• 'DAYHOFF'

• 'GONNET'

• 'BLOSUM30' increasing by 5 up to
'BLOSUM90'

• 'BLOSUM62'

• 'BLOSUM100'

Default is:

• 'BLOSUM50' (when AlphabetValue equals
'AA')

• 'NUC44' (when AlphabetValue equals
'NT')

Note All of the above scoring matrices have a
built-in scale factor that returns Score in bits.

ScaleValue Positive value that specifies the scale factor
used to return Score in arbitrary units other
than bits. For example, if you enter log(2)
for ScaleValue, then nwalign returns Score
in nats.

GapOpenValue Positive integer specifying the penalty for
opening a gap in the alignment. Default is 8.

2-552

nwalign

ExtendGapValue Positive integer specifying the penalty
for extending a gap. Default is equal to
GapOpenValue.

ShowscoreValue Controls the display of the scoring space and
the winning path of the alignment. Choices
are true or false (default).

Return
Values

Score Optimal global alignment score in bits.

Alignment 3-by-N character array showing the two
sequences, Seq1 and Seq2, in the first and
third rows, and symbols representing the
optimal global alignment for them in the
second row.

Start 2-by-1 vector of indices indicating the starting
point in each sequence for the alignment.
Because this is a global alignment, Start is
always [1;1].

Description Score = nwalign(Seq1,Seq2) returns the optimal global alignment
score in bits. The scale factor used to calculate the score is provided by
the scoring matrix.

[Score, Alignment] = nwalign(Seq1,Seq2) returns a 3-by-N
character array showing the two sequences, Seq1 and Seq2, in the
first and third rows, and symbols representing the optimal global
alignment for them in the second row. The symbol | indicates amino
acids or nucleotides that match exactly. The symbol : indicates amino
acids or nucleotides that are related as defined by the scoring matrix
(nonmatches with a zero or positive scoring matrix value).

[Score, Alignment, Start] = nwalign(Seq1,Seq2) returns a 2-by-1
vector of indices indicating the starting point in each sequence for the
alignment. Because this is a global alignment, Start is always [1;1].

2-553

nwalign

... = nwalign(Seq1,Seq2, ...'PropertyName',
PropertyValue, ...) calls nwalign with optional properties
that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed
in single quotation marks and is case insensitive. These property
name/property value pairs are as follows:

... = nwalign(Seq1,Seq2, ...'Alphabet',
AlphabetValue, ...) specifies the type of sequences. Choices are
'AA' (default) or 'NT'.

... = nwalign(Seq1,Seq2,

...'ScoringMatrix', ScoringMatrixValue, ...) specifies the
scoring matrix to use for the global alignment. Default is:

• 'BLOSUM50' (when AlphabetValue equals 'AA')

• 'NUC44' (when AlphabetValue equals 'NT')

... = nwalign(Seq1,Seq2, ...'Scale', ScaleValue, ...)
specifies the scale factor used to return Score in arbitrary units other
than bits. Choices are any positive value.

... = nwalign(Seq1,Seq2, ...'GapOpen', GapOpenValue, ...)
specifies the penalty for opening a gap in the alignment. Choices are
any positive integer. Default is 8.

... = nwalign(Seq1,Seq2, ...'ExtendGap',
ExtendGapValue, ...) specifies the penalty for extending a gap
in the alignment. Choices are any positive integer. Default is equal
to GapOpenValue.

... = nwalign(Seq1,Seq2, ...'Showscore',
ShowscoreValue, ...) controls the display of the scoring space and
winning path of the alignment. Choices are true or false (default)

2-554

nwalign

The scoring space is a heat map displaying the best scores for all
the partial alignments of two sequences. The color of each (n1,n2)
coordinate in the scoring space represents the best score for the pairing
of subsequences Seq1(1:n1) and Seq2(1:n2), where n1 is a position in
Seq1 and n2 is a position in Seq2. The best score for a pairing of specific
subsequences is determined by scoring all possible alignments of the
subsequences by summing matches and gap penalties.

2-555

nwalign

The winning path is represented by black dots in the scoring space and
represents the pairing of positions in the optimal global alignment. The
color of the last point (lower right) of the winning path represents the
optimal global alignment score for the two sequences and is the Score
output returned by nwalign.

Tip The scoring space visually indicates if there are potential alternate
winning paths, which is useful when aligning sequences with big
gaps. Visual patterns in the scoring space can also indicate a possible
sequence rearrangement.

Examples 1 Globally align two amino acid sequences using the BLOSUM50 (default)
scoring matrix and the default values for the GapOpen and ExtendGap
properties. Return the optimal global alignment score in bits and
the alignment character array.

[Score, Alignment] = nwalign('VSPAGMASGYD','IPGKASYD')

Score =

7.3333

Alignment =

VSPAGMASGYD
: | | || ||
I-P-GKAS-YD

2 Globally align two amino acid sequences specifying the PAM250
scoring matrix and a gap open penalty of 5.

[Score, Alignment] = nwalign('IGRHRYHIGG','SRYIGRG',...
'scoringmatrix','pam250',...
'gapopen',5)

2-556

nwalign

Score =

2.3333

Alignment =

IGRHRYHIG-G
: || || |

-S--RY-IGRG

3 Globally align two amino acid sequences returning the Score in nat
units (nats) by specifying a scale factor of log(2).

[Score, Alignment] = nwalign('HEAGAWGHEE','PAWHEAE','Scale',log(2))

Score =

0.2310

Alignment =

HEAGAWGHE-E

|| || |

--P-AW-HEAE

References [1] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological
Sequence Analysis (Cambridge University Press).

See Also Bioinformatics Toolbox functions: blosum, multialign, nt2aa, pam,
profalign, seqdotplot, showalignment, swalign

2-557

oligoprop

Purpose Calculate sequence properties of DNA oligonucleotide

Syntax SeqProperties = oligoprop(SeqNT)
SeqProperties = oligoprop(SeqNT, ...'Salt', SaltValue, ...)
SeqProperties = oligoprop(SeqNT, ...'Temp', TempValue, ...)
SeqProperties = oligoprop(SeqNT, ...'Primerconc',

PrimerconcValue, ...)
SeqProperties = oligoprop(SeqNT, ...'HPBase', HPBaseValue,

...)
SeqProperties = oligoprop(SeqNT, ...'HPLoop', HPLoopValue,

...)
SeqProperties = oligoprop(SeqNT, ...'Dimerlength',

DimerlengthValue, ...)

Arguments SeqNT DNA oligonucleotide sequence represented by
any of the following:
• Character string containing the letters A, C, G,

T, or N

• Vector of integers containing the integers 1,
2, 3, 4, or 15

• Structure containing a Sequence field that
contains a nucleotide sequence

SaltValue Value that specifies a salt concentration in
moles/liter for melting temperature calculations.
Default is 0.05 moles/liter.

TempValue Value that specifies the temperature in degrees
Celsius for nearest-neighbor calculations of free
energy. Default is 25 degrees Celsius.

PrimerconcValue Value that specifies the concentration in
moles/liter for melting temperature calculations.
Default is 50e-6 moles/liter.

2-558

oligoprop

HPBaseValue Value that specifies the minimum number of
paired bases that form the neck of the hairpin.
Default is 4 base pairs.

HPLoopValue Value that specifies the minimum number of
bases that form the loop of a hairpin. Default is
2 bases.

DimerlengthValue Value that specifies the minimum number of
aligned bases between the sequence and its
reverse. Default is 4 bases.

Return
Values

SeqProperties Structure containing the sequence properties for
a DNA oligonucleotide.

Description SeqProperties = oligoprop(SeqNT) returns the sequence properties
for a DNA oligonucleotide as a structure with the following fields:

Field Description

GC Percent GC content for the DNA oligonucleotide.
Ambiguous N characters in SeqNT are considered
to potentially be any nucleotide. If SeqNT contains
ambiguous N characters, GC is the midpoint value,
and its uncertainty is expressed by GCdelta.

GCdelta The difference between GC (midpoint value) and
either the maximum or minimum value GC could
assume. The maximum and minimum values are
calculated by assuming all N characters are G/C or
not G/C, respectively. Therefore, GCdelta defines
the possible range of GC content.

2-559

oligoprop

Field Description

Hairpins H-by-length(SeqNT) matrix of characters
displaying all potential hairpin structures for the
sequence SeqNT. Each row is a potential hairpin
structure of the sequence, with the hairpin
forming nucleotides designated by capital letters.
H is the number of potential hairpin structures for
the sequence. Ambiguous N characters in SeqNT
are considered to potentially complement any
nucleotide.

Dimers D-by-length(SeqNT) matrix of characters
displaying all potential dimers for the sequence
SeqNT. Each row is a potential dimer of the
sequence, with the self-dimerizing nucleotides
designated by capital letters. D is the number of
potential dimers for the sequence. Ambiguous N
characters in SeqNT are considered to potentially
complement any nucleotide.

MolWeight Molecular weight of the DNA oligonucleotide.
Ambiguous N characters in SeqNT are considered
to potentially be any nucleotide. If SeqNT contains
ambiguous N characters, MolWeight is the
midpoint value, and its uncertainty is expressed
by MolWeightdelta.

MolWeightdelta The difference between MolWeight (midpoint
value) and either the maximum or minimum
value MolWeight could assume. The maximum
and minimum values are calculated by assuming
all N characters are G or C, respectively. Therefore,
MolWeightdelta defines the possible range of
molecular weight for SeqNT.

2-560

oligoprop

Field Description

Tm A vector with melting temperature values, in
degrees Celsius, calculated by six different
methods, listed in the following order:
• Basic (Marmur et al., 1962)

• Salt adjusted (Howley et al., 1979)

• Nearest-neighbor (Breslauer et al., 1986)

• Nearest-neighbor (SantaLucia Jr. et al., 1996)

• Nearest-neighbor (SantaLucia Jr., 1998)

• Nearest-neighbor (Sugimoto et al., 1996)

Ambiguous N characters in SeqNT are considered
to potentially be any nucleotide. If SeqNT contains
ambiguous N characters, Tm is the midpoint value,
and its uncertainty is expressed by Tmdelta.

Tmdelta A vector containing the differences between Tm
(midpoint value) and either the maximum or
minimum value Tm could assume for each of the
six methods. Therefore, Tmdelta defines the
possible range of melting temperatures for SeqNT.

2-561

oligoprop

Field Description

Thermo 4-by-3 matrix of thermodynamic calculations.

The rows correspond to nearest-neighbor
parameters from:

• Breslauer et al., 1986

• SantaLucia Jr. et al., 1996

• SantaLucia Jr., 1998

• Sugimoto et al., 1996

The columns correspond to:

• delta H — Enthalpy in kilocalories per mole,
kcal/mol

• delta S — Entropy in calories per mole-degrees
Kelvin, cal/(K)(mol)

• delta G — Free energy in kilocalories per mole,
kcal/mol

Ambiguous N characters in SeqNT are considered
to potentially be any nucleotide. If SeqNT contains
ambiguous N characters, Thermo is the midpoint
value, and its uncertainty is expressed by
Thermodelta.

Thermodelta 4-by-3 matrix containing the differences between
Thermo (midpoint value) and either the maximum
or minimum value Thermo could assume for each
calculation and method. Therefore, Thermodelta
defines the possible range of thermodynamic
values for SeqNT.

SeqProperties = oligoprop(SeqNT, ...'PropertyName',
PropertyValue, ...) calls oligoprop with optional properties that

2-562

oligoprop

use property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property
value pairs are as follows:

SeqProperties = oligoprop(SeqNT, ...'Salt', SaltValue, ...)
specifies a salt concentration in moles/liter for melting temperature
calculations. Default is 0.05 moles/liter.

SeqProperties = oligoprop(SeqNT, ...'Temp', TempValue, ...)
specifies the temperature in degrees Celsius for nearest-neighbor
calculations of free energy. Default is 25 degrees Celsius.

SeqProperties = oligoprop(SeqNT, ...'Primerconc',
PrimerconcValue, ...) specifies the concentration in moles/liter for
melting temperatures. Default is 50e-6 moles/liter.

SeqProperties = oligoprop(SeqNT, ...'HPBase', HPBaseValue,
...) specifies the minimum number of paired bases that form the neck
of the hairpin. Default is 4 base pairs.

SeqProperties = oligoprop(SeqNT, ...'HPLoop', HPLoopValue,
...) specifies the minimum number of bases that form the loop of a
hairpin. Default is 2 bases.

SeqProperties = oligoprop(SeqNT, ...'Dimerlength',
DimerlengthValue, ...) specifies the minimum number of aligned
bases between the sequence and its reverse. Default is 4 bases.

Examples Calculating Properties for a DNA Sequence

1 Create a random sequence.

seq = randseq(25)

seq =

TAGCTTCATCGTTGACTTCTACTAA

2 Calculate sequence properties of the sequence.

2-563

oligoprop

S1 = oligoprop(seq)

S1 =

GC: 36

GCAlpha: 0

Hairpins: [0x25 char]

Dimers: 'tAGCTtcatcgttgacttctactaa'

MolWeight: 7.5820e+003

MolWeightAlpha: 0

Tm: [52.7640 60.8629 62.2493 55.2870 54.0293 61.0614]

TmAlpha: [0 0 0 0 0 0]

Thermo: [4x3 double]

ThermoAlpha: [4x3 double]

3 List the thermodynamic calculations for the sequence.

S1.Thermo

ans =

-178.5000 -477.5700 -36.1125
-182.1000 -497.8000 -33.6809
-190.2000 -522.9000 -34.2974
-191.9000 -516.9000 -37.7863

Calculating Properties for a DNA Sequence with Ambiguous
Characters

1 Calculate sequence properties of the sequence ACGTAGAGGACGTN.

S2 = oligoprop('ACGTAGAGGACGTN')

S2 =

GC: 53.5714

GCAlpha: 3.5714

Hairpins: 'ACGTagaggACGTn'

2-564

oligoprop

Dimers: [3x14 char]

MolWeight: 4.3329e+003

MolWeightAlpha: 20.0150

Tm: [38.8357 42.2958 57.7880 52.4180 49.9633 55.1330]

TmAlpha: [1.4643 1.4643 10.3885 3.4633 0.2829 3.8074]

Thermo: [4x3 double]

ThermoAlpha: [4x3 double]

2 List the potential dimers for the sequence.

S2.Dimers

ans =

ACGTagaggacgtn
ACGTagaggACGTn
acgtagagGACGTN

References [1] Breslauer, K.J., Frank, R., Blöcker, H., and Marky, L.A. (1986).
Predicting DNA duplex stability from the base sequence. Proceedings of
the National Academy of Science USA 83, 3746–3750.

[2] Chen, S.H., Lin, C.Y., Cho, C.S., Lo, C.Z., and Hsiung, C.A. (2003).
Primer Design Assistant (PDA): A web-based primer design tool.
Nucleic Acids Research 31(13), 3751–3754.

[3] Howley, P.M., Israel, M.A., Law, M., and Martin, M.A. (1979). A
rapid method for detecting and mapping homology between heterologous
DNAs. Evaluation of polyomavirus genomes. The Journal of Biological
Chemistry 254(11), 4876–4883.

[4] Marmur, J., and Doty, P. (1962). Determination of the base
composition of deoxyribonucleic acid from its thermal denaturation
temperature. Journal Molecular Biology 5, 109–118.

2-565

oligoprop

[5] Panjkovich, A., and Melo, F. (2005). Comparison of different
melting temperature calculation methods for short DNA sequences.
Bioinformatics 21(6), 711–722.

[6] SantaLucia Jr., J., Allawi, H.T., and Seneviratne, P.A. (1996).
Improved Nearest-Neighbor Parameters for Predicting DNA Duplex
Stability. Biochemistry 35, 3555–3562.

[7] SantaLucia Jr., J. (1998). A unified view of polymer, dumbbell, and
oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of
the National Academy of Science USA 95, 1460–1465.

[8] Sugimoto, N., Nakano, S., Yoneyama, M., and Honda, K. (1996).
Improved thermodynamic parameters and helix initiation factor to
predict stability of DNA duplexes. Nucleic Acids Research 24(22),
4501–4505.

[9] http://www.basic.northwestern.edu/biotools/oligocalc.html for weight
calculations.

See Also Bioinformatics Toolbox functions: isoelectric, molweight, ntdensity,
palindromes, randseq

2-566

http://www.basic.northwestern.edu/biotools/oligocalc.html

optimalleaforder

Purpose Determine optimal leaf ordering for hierarchical binary cluster tree

Syntax Order = optimalleaforder(Tree, Dist)
Order = optimalleaforder(Tree, Dist, ...'Criteria',
CriteriaValue, ...)
Order = optimalleaforder(Tree, Dist, ...'Transformation',

TransformationValue, ...)

Arguments Tree Hierarchical binary cluster tree represented
by an (M - 1)-by-3 matrix, created by the
linkage function, where M is the number of
leaves.

Dist Distance matrix, such as that created by the
pdist function.

2-567

optimalleaforder

CriteriaValue String that specifies the optimization criteria.
Choices are:
• adjacent (default) — Minimizes the sum of

distances between adjacent leaves.

• group — Minimizes the sum of distances
between every leaf and all other leaves in
the adjacent cluster.

TransformationValue Either of the following:

• String that specifies the algorithm to
transform the distances in Dist into
similarity values. Choices are:

- linear (default) — Similarity = max(all
distances) - distance

- quadratic — Similarity = (max(all
distances) - distance)2

- inverse — Similarity = 1/distance

• A function handle created using @ to a
function that transforms the distances in
Dist into similarity values. The function is
typically a monotonic decreasing function
within the range of the distance values. The
function must accept a vector input and
return a vector of the same size.

Return
Values

Order Optimal leaf ordering for the hierarchical
binary cluster tree represented by Tree.

Description Order = optimalleaforder(Tree, Dist) returns the optimal leaf
ordering for the hierarchical binary cluster tree represented by Tree, an
(M - 1)-by-3 matrix, created by the linkage function, where M is the
number of leaves. Optimal leaf ordering of a binary tree maximizes the

2-568

optimalleaforder

similarity between adjacent elements (clusters or leaves) by flipping
tree branches, but without dividing the clusters. The input Dist is a
distance matrix, such as that created by the pdist function.

Order = optimalleaforder(Tree, Dist, ...'PropertyName',
PropertyValue, ...) calls optimalleaforder with optional
properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must
be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:

Order = optimalleaforder(Tree, Dist, ...'Criteria',
CriteriaValue, ...) specifies the optimization criteria.

Order = optimalleaforder(Tree, Dist, ...'Transformation',
TransformationValue, ...) specifies the algorithm to transform
the distances in Dist into similarity values. The transformation
is necessary because optimalleaforder maximizes the similarity
between adjacent elements, which is comparable to minimizing the sum
of distances between adjacent elements.

Examples 1 Use the rand function to create a 10-by-2 matrix of random values.

X = rand(10,2);

2 Use the pdist function to create a distance matrix containing the city
block distances between the pairs of objects in matrix X.

Dist = pdist(X,'cityblock');

3 Use the linkage function to create a matrix, Tree, that represents a
hierarchical binary cluster tree, from the distance matrix, Dist.

Tree = linkage(Dist,'average');

4 Use the optimalleaforder function to determine the optimal leaf
ordering for the hierarchical binary cluster tree represented by Tree,
using the distance matrix Dist.

order = optimalleaforder(Tree,Dist)

2-569

optimalleaforder

References [1] Bar-Joseph, Z., Gifford, D.K., and Jaakkola, T.S. (2001). Fast optimal
leaf ordering for hierarchical clustering. Bioinformatics 17, Suppl
1:S22–9. PMID: 11472989.

See Also Bioinformatics Toolbox function: clustergram

Statistics Toolbox functions: linkage, pdist

2-570

palindromes

Purpose Find palindromes in sequence

Syntax [Position, Length] = palindromes(SeqNT, 'PropertyName',

PropertyValue)

[Position, Length, Pal] = palindromes(SeqNT)

palindromes(..., 'Length',LengthValue)

palindromes(..., 'Complement', ComplementValue)

Description [Position, Length] = palindromes(SeqNT, 'PropertyName', PropertyValue)

finds all palindromes in sequence SeqNT with a length greater than or
equal to 6, and returns the starting indices, Position, and the lengths
of the palindromes, Length.

[Position, Length, Pal] = palindromes(SeqNT) also returns a cell array
Pal of the palindromes.

palindromes(..., 'Length',LengthValue) finds all palindromes longer
than or equal to Length. The default value is 6.

palindromes(..., 'Complement', ComplementValue) finds complementary
palindromes if Complement is true, that is, where the elements match
their complementary pairs A-T(or U) and C-G instead of an exact
nucleotide match.

Examples [p,l,s] = palindromes('GCTAGTAACGTATATATAAT')

p =
11
12

l =
7
7

s =
'TATATAT'
'ATATATA'

[pc,lc,sc] = palindromes('GCTAGTAACGTATATATAAT',...
'Complement',true);

2-571

palindromes

Find the palindromes in a random nucleotide sequence.

a = randseq(100)

a =
TAGCTTCATCGTTGACTTCTACTAA
AAGCAAGCTCCTGAGTAGCTGGCCA
AGCGAGCTTGCTTGTGCCCGGCTGC
GGCGGTTGTATCCTGAATACGCCAT

[pos,len,pal]=palindromes(a)

pos =
74

len =
6

pal =
'GCGGCG'

See Also Bioinformatics Toolbox functions seqrcomplement, seqshowwords

MATLAB functions regexp, strfind

2-572

pam

Purpose PAM scoring matrix

Syntax ScoringMatrix = pam(N, 'PropertyName', PropertyValue)
[ScoringMatrix, MatrixInfo] = pam(N)
ScoringMatrix = pam(..., 'Extended', 'ExtendedValue')
ScoringMatrix = pam(..., 'Order', 'OrderValue')

Arguments
N Enter values 10:10:500. The default ordering

of the output is A R N D C Q E G H I L K M
F P S T W Y V B Z X *.

Entering a larger value for N to allow sequence
alignments with larger evolutionary distances.

Extended Property to add ambiguous characters to the
scoring matrix. Enter either true or false.
Default is false.

Order Property to control the order of amino acids
in the scoring matrix. Enter a string with at
least the 20 standard amino acids.

Description ScoringMatrix = pam(N, 'PropertyName', PropertyValue) returns a
PAM scoring matrix for amino acid sequences.

[ScoringMatrix, MatrixInfo] = pam(N) returns a structure with
information about the PAM matrix. The fields in the structure are Name,
Scale, Entropy, Expected, and Order.

ScoringMatrix = pam(..., 'Extended', 'ExtendedValue') if Extended
is true, returns a scoring matrix with the 20 amino acid characters, the
ambiguous characters, and stop character (B, Z, X, *), . If Extended is
false, only the standard 20 amino acids are included in the matrix.

ScoringMatrix = pam(..., 'Order', 'OrderValue') returns a PAM
matrix ordered by the amino acid sequence in Order. If Order does not
contain the extended characters B, Z, X, and *, then these characters
are not returned.

2-573

pam

PAM50 substitution matrix in 1/2 bit units, Expected score = -3.70,
Entropy = 2.00 bits, Lowest score = -13, Highest score = 13.

PAM250 substitution matrix in 1/3 bit units, Expected score = -0.844,
Entropy = 0.354 bits, Lowest score = -8, Highest score = 17.

Examples Get the PAM matrix with N = 50.

PAM50 = pam(50)

PAM250 = pam(250,'Order','CSTPAGNDEQHRKMILVFYW')

See Also Bioinformatics Toolbox functions blosum, dayhoff, gonnet, nwalign,
swalign

2-574

pdbdistplot

Purpose Visualize intermolecular distances in Protein Data Bank (PDB) file

Syntax pdbdistplot('PDBid')
pdbdistplot('PDBid', Distance)

Arguments
PDBid Unique identifier for a protein structure record. Each

structure in the PDB is represented by a 4-character
alphanumeric identifier.

For example, 4hhb is the identification code for
hemoglobin.

Distance Threshold distance in Angstroms shown on a spy
plot. Default value is 7.

Description pdbdistplot displays the distances between atoms and amino acids
in a PDB structure.

pdbdistplot('PDBid') retrieves the entry PDBid from the Protein Data
Bank (PDB) database and creates a heat map showing interatom
distances and a spy plot showing the residues where the minimum
distances apart are less than 7 Angstroms. PDBid can also be the name
of a variable or a file containing a PDB MATLAB structure.

pdbdistplot('PDBid', Distance) specifies the threshold distance shown
on a spy plot.

Examples Show spy plot at 7 Angstroms of the protein cytochrome C from albacore
tuna.

pdbdistplot('5CYT');

Now take a look at 10 Angstroms.

pdbdistplot('5CYT',10);

2-575

pdbdistplot

See Also Bioinformatics Toolbox functions: getpdb, molviewer, pdbread,
proteinplot, ramachandran

2-576

pdbread

Purpose Read data from Protein Data Bank (PDB) file

Syntax PDBStruct = pdbread(File)
PDBStruct = pdbread(File, 'ModelNum', ModelNumValue)

Arguments File Either of the following:

• String specifying a file name, a path and file
name, or a URL pointing to a file. The referenced
file is a Protein Data Bank (PDB)-formatted file
(ASCII text file). If you specify only a file name,
that file must be on the MATLAB search path or
in the MATLAB Current Directory.

• MATLAB character array that contains the text
of a PDB-formatted file.

ModelNumValue Positive integer specifying a model in a
PDB-formatted file.

Return
Values

PDBStruct MATLAB structure containing a field for each PDB
record.

Description The Protein Data Bank (PDB) database is an archive of experimentally
determined 3-D biological macromolecular structure data. For more
information about the PDB format, see:

http://www.rcsb.org/pdb/file_formats/pdb/pdbguide2.2/guide2.2_frame.html

PDBStruct = pdbread(File) reads the data from PDB-formatted text file
File and stores the data in the MATLAB structure, PDBStruct, which
contains a field for each PDB record. The following table summarizes

2-577

http://www.rcsb.org/pdb/file_formats/pdb/pdbguide2.2/guide2.2_frame.html

pdbread

the possible PDB records and the corresponding fields in the MATLAB
structure PDBStruct:

PDB Database Record Field in the MATLAB Structure

HEADER Header

OBSLTE Obsolete

TITLE Title

CAVEAT Caveat

COMPND Compound

SOURCE Source

KEYWDS Keywords

EXPDTA ExperimentData

AUTHOR Authors

REVDAT RevisionDate

SPRSDE Superseded

JRNL Journal

REMARK 1 Remark1

REMARK N

Note N equals 2 through
999.

Remarkn

Note n equals 2 through 999.

DBREF DBReferences

SEQADV SequenceConflicts

SEQRES Sequence

FTNOTE Footnote

MODRES ModifiedResidues

2-578

pdbread

PDB Database Record Field in the MATLAB Structure

HET Heterogen

HETNAM HeterogenName

HETSYN HeterogenSynonym

FORMUL Formula

HELIX Helix

SHEET Sheet

TURN Turn

SSBOND SSBond

LINK Link

HYDBND HydrogenBond

SLTBRG SaltBridge

CISPEP CISPeptides

SITE Site

CRYST1 Cryst1

ORIGXn OriginX

SCALEn Scale

MTRIXn Matrix

TVECT TranslationVector

MODEL Model

ATOM Atom

SIGATM AtomSD

ANISOU AnisotropicTemp

SIGUIJ AnisotropicTempSD

TER Terminal

2-579

pdbread

PDB Database Record Field in the MATLAB Structure

HETATM HeterogenAtom

CONECT Connectivity

PDBStruct = pdbread(File, 'ModelNum', ModelNumValue) reads only
the model specified by ModelNumValue from the PDB-formatted text
file File and stores the data in the MATLAB structure PDBStruct. If
ModelNumValue does not correspond to an existing mode number in
File, then pdbread reads the coordinate information of all the models.

The Sequence Field

The Sequence field is also a structure containing sequence information
in the following subfields:

• NumOfResidues

• ChainID

• ResidueNames — Contains the three-letter codes for the sequence
residues.

• Sequence — Contains the single-letter codes for the sequence
residues.

Note If the sequence has modified residues, then the ResidueNames
subfield might not correspond to the standard three-letter amino acid
codes. In this case, the Sequence subfield will contain the modified
residue code in the position corresponding to the modified residue. The
modified residue code is provided in the ModifiedResidues field.

The Model Field

The Model field is also a structure or an array of structures containing
coordinate information. If the MATLAB structure contains one model,
the Model field is a structure containing coordinate information for that
model. If the MATLAB structure contains multiple models, the Model

2-580

pdbread

field is an array of structures containing coordinate information for
each model. The Model field contains the following subfields:

• Atom

• AtomSD

• AnisotropicTemp

• AnisotropicTempSD

• Terminal

• HeterogenAtom

The Atom Field

The Atom field is also an array of structures containing the following
subfields:

• AtomSerNo

• AtomName

• altLoc

• resName

• chainID

• resSeq

• iCode

• X

• Y

• Z

• occupancy

• tempFactor

• segID

• element

2-581

pdbread

• charge

• AtomNameStruct — Contains three subfields: chemSymbol,
remoteInd, and branch.

Examples 1 Use the getpdb function to retrieve structure information from the
Protein Data Bank (PDB) for the nicotinic receptor protein with
identifier 1abt, and then save the data to the PDB-formatted file
nicotinic_receptor.pdb in the MATLAB Current Directory.

getpdb('1abt', 'ToFile', 'nicotinic_receptor.pdb');

2 Read the data from the nicotinic_receptor.pdb file into a
MATLAB structure pdbstruct.

pdbstruct = pdbread('nicotinic_receptor.pdb');

3 Read only the second model from the nicotinic_receptor.pdb file
into a MATLAB structure pdbstruct_Model2.

pdbstruct_Model2 = pdbread('nicotinic_receptor.pdb', 'ModelNum', 2);

4 View the atomic coordinate information in the model fields of both
MATLAB structures pdbstruct and pdbstruct_Model2.

pdbstruct.Model

ans =

1x4 struct array with fields:
MDLSerNo
Atom
Terminal

pdbstruct_Model2.Model

ans =

MDLSerNo: 2

2-582

pdbread

Atom: [1x1205 struct]
Terminal: [1x2 struct]

5 Read the data from an URL into a MATLAB structure,
gfl_pdbstruct.

gfl_pdbstruct = pdbread('http://www.rcsb.org/pdb/files/1gfl.pdb')

See Also Bioinformatics Toolbox functions: genpeptread, getpdb, molviewer,
pdbdistplot, pdbwrite

2-583

pdbwrite

Purpose Write to file using Protein Data Bank (PDB) format

Syntax pdbwrite(File, PDBStruct)
PDBArray = pdbwrite(File, PDBStruct)

Arguments File String specifying either a file name or a path and
file name for saving the PDB-formatted data. If
you specify only a file name, the file is saved to the
MATLAB Current Directory.

Tip After you save the MATLAB structure to a
local PDB-formatted file, you can use the molviewer
function to display and manipulate a 3-D image of the
structure.

PDBStruct MATLAB structure containing 3-D protein structure
coordinate data, created initially by using the getpdb
or pdbread functions.

Note You can edit this structure to modify its 3-D
protein structure data. The coordinate information is
stored in the Model field of PDBStruct.

Return
Values

PDBArray Character array in which each row corresponds to a
line in a PDB record.

Description pdbwrite(File, PDBStruct) writes the contents of the MATLAB
structure PDBStruct to a PDB-formatted file (ASCII text file) whose
path and file name are specified by File. In the output file, File, the

2-584

pdbwrite

atom serial numbers are preserved. The atomic coordinate records are
ordered according to their atom serial numbers.

Tip After you save the MATLAB structure to a local PDB-formatted
file, you can use the molviewer function to display and manipulate a
3-D image of the structure.

PDBArray = pdbwrite(File, PDBStruct) saves the formatted
PDB record, converted from the contents of the MATLAB structure
PDBStruct, to PDBArray, a character array in which each row
corresponds to a line in a PDB record.

Note You can edit PDBStruct to modify its 3-D protein structure data.
The coordinate information is stored in the Model field of PDBStruct.

Examples 1 Use the getpdb function to retrieve structure information from
the Protein Data Bank (PDB) for the green fluorescent protein
with identifier 1GFL , and store the data in the MATLAB structure
gflstruct.

gflstruct = getpdb('1GFL');

2 Find the x-coordinate of the first atom.

gflstruct.Model.Atom(1).X

ans =

-14.0930

3 Edit the x-coordinate of the first atom.

gflstruct.Model.Atom(1).X = -18;

2-585

pdbwrite

Note Do not add or remove any Atom fields, because the pdbwrite
function does not allow the number of elements in the structure to
change.

4 Write the modified MATLAB structure gflstruct to a new
PDB-formatted file modified_gfl.pdb in the Work directory on your
C drive.

pdbwrite('c:\work\modified_gfl.pdb', gflstruct);

5 Use the pdbread function to read the modified PDB file into a
MATLAB structure, then confirm that the x-coordinate of the first
atom has changed.

modified_gflstruct = pdbread('c:\work\modified_gfl.pdb')
modified_gflstruct.Model.Atom(1).X

ans =

-18

See Also Bioinformatics Toolbox functions: getpdb, molviewer, pdbread

2-586

pfamhmmread

Purpose Read data from PFAM-HMM file

Syntax Data = pfamhmmread('File')

Arguments File PFAM-HMM formatted file. Enter a file name, a path and file
name, or a URL pointing to a file. File can also be a MATLAB
character array that contains the text of a PFAM-HMM file.

Description pfamhmmread reads data from a PFAM-HMM formatted file (file saved
with the function gethmmprof) and creates a MATLAB structure.

Data = pfamhmmread('File') reads from File a Hidden Markov Model
described by the PFAM format, and converts it to the MATLAB
structure Data, containing fields corresponding to annotations and
parameters of the model. For more information about the model
structure format, see hmmprofstruct. File can also be a URL or a
MATLAB cell array that contains the text of a PFAM formatted file.

pfamhmmread is based on the HMMER 2.0 file formats.

Examples pfamhmmread('pf00002.ls')

site='http://www.sanger.ac.uk/';
pfamhmmread([site 'cgi-bin/Pfam/download_hmm.pl?mode=ls&id=7tm_2'])

See Also Bioinformatics Toolbox functions: gethmmalignment, gethmmprof,
hmmprofalign, hmmprofstruct, showhmmprof

2-587

phytree

Purpose Create phytree object

Syntax Tree = phytree(B)
Tree = phytree(B, D)
Tree = phytree(B, C)
Tree = phytree(BC)
Tree = phytree(..., N)
Tree = phytree

Arguments
B Numeric array of size [NUMBRANCHES X 2] in which every row

represents a branch of the tree. It contains two pointers to the
branch or leaf nodes, which are its children.

C Column vector with distances for every branch.

D Column vector with distances from every node to their parent
branch.

BC Combined matrix with pointers to branches or leaves, and
distances of branches.

N Cell array with the names of leaves and branches.

Description Tree = phytree(B) creates an ultrametric phylogenetic tree object. In
an ultrametric phylogenetic tree object, all leaves are the same distance
from the root.

B is a numeric array of size [NUMBRANCHES X 2] in which every row
represents a branch of the tree and it contains two pointers to the
branch or leaf nodes, which are its children.

Leaf nodes are numbered from 1 to NUMLEAVES and branch nodes are
numbered from NUMLEAVES + 1 to NUMLEAVES + NUMBRANCHES. Note
that because only binary trees are allowed, NUMLEAVES = NUMBRANCHES
+ 1.

Branches are defined in chronological order (for example, B(i,:) >
NUMLEAVES + i). As a consequence, the first row can only have pointers
to leaves, and the last row must represent the root branch. Parent-child

2-588

phytree

distances are set to 1, unless the child is a leaf and to satisfy the
ultrametric condition of the tree its distance is increased.

Given a tree with three leaves and two branches as an example.

In the MATLAB Command Window, type

B = [1 2 ; 3 4]
tree = phytree(B)
view(tree)

2-589

phytree

Tree = phytree(B, D) creates an additive (ultrametric or
nonultrametric) phylogenetic tree object with branch distances defined
by D. D is a numeric array of size [NUMNODES X 1] with the distances of
every child node (leaf or branch) to its parent branch equal to NUMNODES
= NUMLEAVES + NUMBRANCHES. The last distance in D is the distance of
the root node and is meaningless.

b = [1 2 ; 3 4]: d = [1 2 1.5 1 0]
view(phytree(b,d)

Tree = phytree(B, C) creates an ultrametric phylogenetic tree object
with distances between branches and leaves defined by C. C is a numeric
array of size [NUMBRANCHES X 1], which contains the distance from
each branch to the leaves. In ultrametric trees, all of the leaves are at
the same location (same distance to the root).

b = [1 2 ; 3 4]; c = [1 4]'
view(phytree(b,c))

Tree = phytree(BC) creates an ultrametric phylogenetic binary tree
object with branch pointers in BC(:,[1 2]) and branch coordinates in
BC(:,3). Same as phytree(B,C).

Tree = phytree(..., N) specifies the names for the leaves and/or the
branches. N is a cell of strings. If NUMEL(N)==NUMLEAVES, then the names
are assigned chronologically to the leaves. If NUMEL(N)==NUMBRANCHES,
the names are assigned to the branch nodes. If NUMEL(N)==NUMLEAVES
+ NUMBRANCHES, all the nodes are named. Unassigned names default
to 'Leaf #' and/or 'Branch #' as required.

Tree = phytree creates an empty phylogenetic tree object.

Examples Create a phylogenetic tree for a set of multiply aligned sequences.

Sequences = multialignread('aagag.aln')
distances = seqpdist(Sequences)
tree = seqlinkage(distances)
phytreetool(tree)

2-590

phytree

See Also Bioinformatics Toolbox functions: phytreeread, phytreetool,
phytreewrite, seqlinkage, seqneighjoin, seqpdist

Bioinformatics Toolbox object: phytree object

Bioinformatics Toolbox methods of phytree object: get, getbyname,
getcanonical, getmatrix, getnewickstr, pdist, plot, prune, reroot,
select, subtree, view, weights

2-591

phytreeread

Purpose Read phylogenetic tree file

Syntax Tree = phytreeread(File)

Arguments
File Newick-formatted tree files (ASCII text file). Enter a file

name, a path and file name, or a URL pointing to a file. File
can also be a MATLAB character array that contains the
text for a file.

Tree phytree object created with the function phytree.

Description Tree = phytreeread(File) reads a Newick formatted tree file and
returns a phytree object in the MATLAB workspace with data from
the file.

The NEWICK tree format can be found at

http://evolution.genetics.washington.edu/phylip/newicktree.html

Note This implementation only allows binary trees. Non-binary trees
are translated into a binary tree with extra branches of length 0.

Examples tr = phytreeread('pf00002.tree')

See Also Bioinformatics Toolbox functions: phytree (object constructor),
gethmmtree, phytreetool, phytreewrite

2-592

http://evolution.genetics.washington.edu/phylip/newicktree.html

phytreetool

Purpose View, edit, and explore phylogenetic tree data

Syntax phytreetool(Tree)
phytreetool(File)

Arguments
Tree Phytree object created with the functions phytree or

phytreeread.

File Newick or ClustalW tree formatted file (ASCII text file) with
phylogenetic tree data. Enter a file name, a path and file
name, or a URL pointing to a file. File can also be a MATLAB
character array that contains the text for a Newick file.

Description phytreetool is an interactive GUI that allows you to view, edit, and
explore phylogenetic tree data. This GUI allows branch pruning,
reordering, renaming, and distance exploring. It can also open or save
Newick formatted files.

phytreetool(Tree) loads data from a phytree object in the MATLAB
workspace into the GUI.

phytreetool(File) loads data from a Newick formatted file into the
GUI.

Examples tr= phytreeread('pf00002.tree')
phytreetool(tr)

2-593

phytreetool

See Also Bioinformatics Toolbox functions: phytree (object constructor),
phytreeread, phytreewrite

Bioinformatics Toolbox methods of phytree object: plot, view

2-594

phytreewrite

Purpose Write phylogenetic tree object to Newick-formatted file

Syntax phytreewrite('File', Tree)
phytreewrite(Tree)

Arguments
File Newick-formatted file. Enter either a file name or a

path and file name supported by your operating system
(ASCII text file).

Tree Phylogenetic tree object, either created with phytree
(object constructor function) or imported using the
phytreeread function.

Description phytreewrite('File', Tree) copies the contents of a phytree object
from the MATLAB workspace to a file. Data in the file uses the Newick
format for describing trees.

The Newick tree format can be found at

http://evolution.genetics.washington.edu/phylip/newicktree.html

phytreewrite(Tree) opens the Save Phylogenetic Tree As dialog box for
you to enter or select a file name.

Examples Read tree data from a Newick-formatted file.

tr = phytreeread('pf00002.tree')

Remove all the mouse proteins

ind = getbyname(tr,'mouse');
tr = prune(tr,ind);

2-595

http://evolution.genetics.washington.edu/phylip/newicktree.html

phytreewrite

view(tr)

Write pruned tree data to a file.

phytreewrite('newtree.tree', tr)

See Also Bioinformatics Toolbox functions: phytree (object constructor),
phytreeread, phytreetool, seqlinkage

Bioinformatics Toolbox object: phytree object

Bioinformatics Toolbox methods of phytree object: getnewickstr

2-596

probelibraryinfo

Purpose Create table of probe set library information

Syntax ProbeInfo = probelibraryinfo(CELStruct, CDFStruct)

Arguments CELStruct Structure created by the affyread function from an
Affymetrix CEL file.

CDFStruct Structure created by the affyread function from
an Affymetrix CDF library file associated with the
CEL file.

Return
Values

ProbeInfo Three-column matrix with the same number of
rows as the Probes field of the CELStruct.

• Column 1 — Probe set ID/name to which the
probe belongs. (Probes that do not belong to a
probe set in the CDF library file have probe set
ID/name equal to 0.)

• Column 2 — Contains the probe pair number.

• Column 3 — Indicates if the probe is a perfect
match (1) or mismatch (-1) probe.

Description ProbeInfo = probelibraryinfo(CELStruct, CDFStruct) creates a
table of information linking the probe data from CELStruct, a structure
created from an Affymetrix CEL file, with probe set information from
CDFStruct, a structure created from an Affymetrix CDF file.

Note Affymetrix probe pair indexing is 0-based, while MATLAB
indexing is 1-based. The output from probelibraryinfo is 1-based.

2-597

probelibraryinfo

Examples The following example uses a sample CEL file and the CDF library file
from the E. coli Antisense Genome array, which you can download from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After you download the demo data, you will need the Affymetrix Data
Transfer Tool to extract the CEL file from a DTT file. You can download
the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/products/software/specific/dtt.affx

The following example assumes that the Ecoli-antisense-121502.CEL
file is stored on the MATLAB search path or in the current directory.
It also assumes that the associated CDF library file, Ecoli_ASv2.CDF,
is stored at D:\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CEL file into a MATLAB structure.

celStruct = affyread('Ecoli-antisense-121502.CEL');

2 Read the contents of a CDF file into a MATLAB structure.

cdfStruct = affyread('D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF');

3 Extract probe set library information.

ProbeInfo = probelibraryinfo(celStruct, cdfStruct);

4 Determine the probe set to which the 1104th probe belongs.

cdfStruct.ProbeSets(ProbeInfo(1104,1)).Name

ans =

thrA_b0002_at

See Also Bioinformatics Toolbox functions: affyread, celintensityread,
probesetlink, probesetlookup, probesetplot, probesetvalues

2-598

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/products/software/specific/dtt.affx

probesetlink

Purpose Display probe set information on NetAffx Web site

Syntax probesetlink(AffyStruct, PS)
URL = probesetlink(AffyStruct, PS)
probesetlink(AffyStruct, PS, ...'Source', SourceValue, ...)
probesetlink(AffyStruct, PS, ...'Browser',
BrowserValue, ...)
URL = probesetlink(AffyStruct, PS, ...'NoDisplay',

NoDisplayValue, ...)

Arguments AffyStruct Structure created by the affyread function from
an Affymetrix CHP file or an Affymetrix CDF
library file.

PS Probe set index or the probe set ID/name.

SourceValue Controls the linking to the data source (for
example, GenBank or Flybase) for the probe
set (instead of linking to the NetAffx Web site).
Choices are true or false (default).

Note This property requires the GIN library file
associated with the CHP or CDF file to be located
in the same directory as the CDF library file.

BrowserValue Controls the display of the probe set information
in your system’s default Web browser. Choices are
true or false (default).

NoDisplayValue Controls the return of URL without opening a Web
browser. Choices are true or false (default).

Return
Values

URL URL for the probe set information.

2-599

probesetlink

Description probesetlink(AffyStruct, PS) opens a Web Browser window
displaying information on the NetAffx Web site about a probe set
specified by PS, a probe set index or the probe set ID/name, and
AffyStruct, a structure created from an Affymetrix CHP file or
Affymetrix CDF library file.

URL = probesetlink(AffyStruct, PS) also returns the URL (linking
to the NetAffx Web site) for the probe set information.

probesetlink(AffyStruct, PS, ...'PropertyName',
PropertyValue, ...) calls probesetlink with optional properties
that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed
in single quotation marks and is case insensitive. These property
name/property value pairs are as follows:

probesetlink(AffyStruct, PS, ...'Source', SourceValue, ...)
controls the linking to the data source (for example, GenBank or
Flybase) for the probe set (instead of linking to the NetAffx Web site).
Choices are true or false (default).

Note The 'Source' property requires the GIN library file associated
with the CHP or CDF file to be located in the same directory as the
CDF library file.

probesetlink(AffyStruct, PS, ...'Browser', BrowserValue,
...) controls the display of the probe set information in your system’s
default Web browser. Choices are true or false (default).

URL = probesetlink(AffyStruct, PS, ...'NoDisplay',
NoDisplayValue, ...) controls the return of the URL without opening
a Web browser. Choices are true or false (default).

Note The NetAffx Web site requires you to register and provide a user
name and password.

2-600

probesetlink

Examples The following example uses a sample CHP file and the CDF library file
from the E. coli Antisense Genome array, which you can download from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After you download the demo data, you will need the Affymetrix Data
Transfer Tool to extract the CHP file from a DTT file. You can download
the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/products/software/specific/dtt.affx

The following example assumes that the Ecoli-antisense-121502.CHP
file is stored on the MATLAB search path or in the current directory.
It also assumes that the associated CDF library file, Ecoli_ASv2.CDF,
is stored at D:\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CHP file into a MATLAB structure.

chpStruct = affyread('Ecoli-antisense-121502.CHP',...
'D:\Affymetrix\LibFiles\Ecoli');

2 Display information from the NetAffx Web site for the argG_b3172_at
probe set.

probesetlink(chpStruct,'argG_b3172_at')

See Also Bioinformatics Toolbox functions: affyread, celintensityread,
probelibraryinfo, probesetlookup, probesetplot, probesetvalues

2-601

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/products/software/specific/dtt.affx

probesetlookup

Purpose Look up information for probe set

Syntax PSStruct = probesetlookup(AffyStruct, ID)

Arguments AffyStruct Structure created by the affyread function from an
Affymetrix CHP file or an Affymetrix CDF library file
for expression assays.

ID Probe set ID/name or gene ID.

Return
Values

PSStruct Structure containing the following fields for a probe set:
• Identifier — Gene ID associated with the probe set

• ProbeSetName — Probe set ID/name

• CDFIndex — Index into the CDF structure for the
probe set

• GINIndex — Index into the GIN structure for the
probe set

• Description — Description of the probe set

• Source — Source(s) of the probe set

• SourceURL — Source URL(s) for the probe set

Description PSStruct = probesetlookup(AffyStruct, ID) returns a structure
containing information for a probe set specified by ID, a probe set
ID/name or gene ID, and by AffyStruct, a structure created from an
Affymetrix CHP file or Affymetrix CDF library file for expression assays.

2-602

probesetlookup

Note This function works with CHP files and CDF files for expression
assays only. It requires that the GIN library file associated with the
CHP file or CDF file to be located in the same directory as the CDF
library file.

Examples The following example uses the CDF library file from the E. coli
Antisense Genome array, which you can download from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

The following example assumes that the Ecoli_ASv2.CDF library file
is stored at D:\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CDF library file into a MATLAB structure.

cdfStruct = affyread('D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF');

2 Look up the gene ID (Identifier) associated with the argG_b3172_at
probe set.

probesetlookup(cdfStruct,'argG_b3172_at')

ans =

Identifier: '3315278'
ProbeSetName: 'argG_b3172_at'

CDFIndex: 5213
GINIndex: 3074

Description: [1x82 char]
Source: 'NCBI EColi Genome'

SourceURL: [1x74 char]

See Also Bioinformatics Toolbox functions: affyread, celintensityread,
probelibraryinfo, probesetlink, probesetplot, probesetvalues,
rmabackadj

2-603

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

probesetplot

Purpose Plot Affymetrix probe set intensity values

Syntax probesetplot(CELStruct, CDFStruct, PS)
probesetplot(CELStruct, CDFStruct, PS, ...'GeneName',
GeneNameValue, ...)
probesetplot(CELStruct, CDFStruct, PS, ...'Field',

FieldValue, ...)
probesetplot(CELStruct, CDFStruct, PS, ...'ShowStats',

ShowStatsValue, ...)

Arguments CELStruct Structure created by the affyread function from
an Affymetrix CEL file.

CDFStruct Structure created by the affyread function from
an Affymetrix CDF library file associated with
the CEL file.

PS Probe set index or the probe set ID/name.

GeneNameValue Controls whether the probe set name or the gene
name is used for the title of the plot. Choices are
true or false (default).

Note The 'GeneName' property requires the
GIN library file associated with the CEL and
CDF files to be located in the same directory as
the CDF library file from which CDFStruct was
created.

2-604

probesetplot

FieldValue String specifying the type of data to plot. Choices
are:
• 'Intensity' (default)

• 'StdDev'

• 'Background'

• 'Pixels'

• 'Outlier'

ShowStatsValue Controls whether the mean and standard
deviation lines are included in the plot. Choices
are true or false (default).

Description probesetplot(CELStruct, CDFStruct, PS) plots the PM (perfect
match) and MM (mismatch) intensity values for a specified probe set.
CELStruct is a structure created by the affyread function from an
Affymetrix CEL file. CDFStruct is a structure created by the affyread
function from an Affymetrix CDF library file associated with the CEL
file. PS is the probe set index or the probe set ID/name.

Note MATLAB uses 1-based indexing for probe set numbers, while
the Affymetrix CDF file uses 0-based indexing for probe set numbers.
For example, CDFStruct.ProbeSets(1) has a ProbeSetNumber of 0 in
the ProbePairs field.

probesetplot(CELStruct, CDFStruct, PS, ...'PropertyName',
PropertyValue, ...) calls probesetplot with optional properties
that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed
in single quotation marks and is case insensitive. These property
name/property value pairs are as follows:

2-605

probesetplot

probesetplot(CELStruct, CDFStruct, PS, ...'GeneName',
GeneNameValue, ...) controls whether the probe set name or the gene
name is used for the title of the plot. Choices are true or false (default).

Note The 'GeneName' property requires the GIN library file associated
with the CEL and CDF files to be located in the same directory as the
CDF library file from which CDFStruct was created.

probesetplot(CELStruct, CDFStruct, PS, ...'Field',
FieldValue, ...) specifies the type of data to plot. Choices are:

• 'Intensity' (default)

• 'StdDev'

• 'Background'

• 'Pixels'

• 'Outlier'

probesetplot(CELStruct, CDFStruct, PS, ...'ShowStats',
ShowStatsValue, ...) controls whether the mean and standard
deviation lines are included in the plot. Choices are true or false
(default).

Examples The following example use a sample CEL file and the CDF library file
from the E. coli Antisense Genome array, which you can download from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After you download the demo data, you will need the Affymetrix Data
Transfer Tool to extract the CEL file from a DTT file. You can download
the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/products/software/specific/dtt.affx

2-606

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/products/software/specific/dtt.affx

probesetplot

The following example assumes that the Ecoli-antisense-121502.CEL
file is stored on the MATLAB search path or in the current directory.
It also assumes that the associated CDF library file, Ecoli_ASv2.CDF,
is stored at D:\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CEL file into a MATLAB structure.

celStruct = affyread('Ecoli-antisense-121502.CEL');

2 Read the contents of a CDF file into a MATLAB structure.

cdfStruct = affyread('D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF');

3 Plot the PM and MM intensity values of the argG_b3172_at probe
set, including the mean and standard deviation.

probesetplot(celStruct, cdfStruct, 'argG_b3172_at','showstats', true)

2-607

probesetplot

See Also Bioinformatics Toolbox functions: affyread, celintensityread,
probesetlink, probesetlookup, probesetvalues

2-608

probesetvalues

Purpose Create table of Affymetrix probe set intensity values

Syntax PSValues = probesetvalues(CELStruct, CDFStruct, PS)

Arguments CELStruct Structure created by the affyread function from an
Affymetrix CEL file.

CDFStruct Structure created by the affyread function from
an Affymetrix CDF library file associated with the
CEL file.

PS Probe set index or the probe set ID/name.

Return
Values

PSValues Eighteen-column matrix with one row for each
probe pair in the probe set.

Description PSValues = probesetvalues(CELStruct, CDFStruct, PS) creates
a table of intensity values for PS, a probe set, from the probe-level
data in CELStruct, a structure created by the affyread function from
an Affymetrix CEL file. PS is a probe set index or probe set ID/name
from CDFStruct, a structure created by the affyread function from an
Affymetrix CDF library file associated with the CEL file. PSValues
is an eighteen-column matrix with one row for each probe pair in the
probe set. The columns correspond to the following fields.

Column Field

1 'ProbeSetNumber'

2 'ProbePairNumber'

3 'UseProbePair'

4 'Background'

5 'PMPosX'

2-609

probesetvalues

Column Field

6 'PMPosY'

7 'PMIntensity'

8 'PMStdDev'

9 'PMPixels'

10 'PMOutlier'

11 'PMMasked'

12 'MMPosX'

13 'MMPosY'

14 'MMIntensity'

15 'MMStdDev'

16 'MMPixels'

17 'MMOutlier'

18 'MMMasked'

Note The 'UseProbePair' field is for backward compatibility only
and is not currently used.

Note MATLAB uses 1-based indexing for probe set numbers, while
the Affymetrix CDF file uses 0-based indexing for probe set numbers.
For example, CDFStruct.ProbeSets(1) has a ProbeSetNumber of 0 in
the ProbePairs field.

Examples The following example uses a sample CEL file and the CDF library file
from the E. coli Antisense Genome array, which you can download from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

2-610

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

probesetvalues

After you download the demo data, you will need the Affymetrix Data
Transfer Tool to extract the CEL file from a DTT file. You can download
the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/products/software/specific/dtt.affx

The following example assumes that the Ecoli-antisense-121502.CEL
file is stored on the MATLAB search path or in the current directory.
It also assumes that the associated CDF library file, Ecoli_ASv2.CDF,
is stored at D:\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CEL file into a MATLAB structure.

celStruct = affyread('Ecoli-antisense-121502.CEL');

2 Read the contents of a CDF file into a MATLAB structure.

cdfStruct = affyread('D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF');

3 Create a table of intensity values for the argG_b3172_at probe set.

psvals = probesetvalues(celStruct, cdfStruct, 'argG_b3172_at');

See Also Bioinformatics Toolbox functions: affyread, celintensityread,
probelibraryinfo, probesetlink, probesetlookup, probesetplot,
rmabackadj

2-611

http://www.affymetrix.com/products/software/specific/dtt.affx

profalign

Purpose Align two profiles using Needleman-Wunsch global alignment

Syntax Prof = profalign(Prof1, Prof2)
[Prof, H1, H2] = profalign(Prof1, Prof2)
profalign(..., 'PropertyName', PropertyValue,...)
profalign(..., 'ScoringMatrix', ScoringMatrixValue)
profalign(..., 'GapOpen', {G1Value, G2Value})
profalign(..., 'ExtendGap', {E1Value, E2Value})
profalign(..., 'ExistingGapAdjust', ExistingGapAdjustValue)
profalign(..., 'TerminalGapAdjust', TerminalGapAdjustValue)
profalign(..., 'ShowScore', ShowScoreValue)

Description Prof = profalign(Prof1, Prof2) returns a new profile (Prof) for the
optimal global alignment of two profiles (Prof1, Prof2). The profiles
(Prof1, Prof2) are numeric arrays of size [(4 or 5 or 20 or 21) x
Profile Length] with counts or weighted profiles. Weighted profiles
are used to down-weight similar sequences and up-weight divergent
sequences. The output profile is a numeric matrix of size [(5 or 21)
x New Profile Length] where the last row represents gaps. Original
gaps in the input profiles are preserved. The output profile is the result
of adding the aligned columns of the input profiles.

[Prof, H1, H2] = profalign(Prof1, Prof2) returns pointers that
indicate how to rearrange the columns of the original profiles into the
new profile.

profalign(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

profalign(..., 'ScoringMatrix', ScoringMatrixValue) defines
the scoring matrix (ScoringMatrixValue) to be used for the alignment.
The default is 'BLOSUM50' for amino acids or 'NUC44' for nucleotide
sequences.

profalign(..., 'GapOpen', {G1Value, G2Value}) sets the penalties
for opening a gap in the first and second profiles respectively. G1Value
and G2Value can be either scalars or vectors. When using a vector, the
number of elements is one more than the length of the input profile.
Every element indicates the position specific penalty for opening a gap

2-612

profalign

between two consecutive symbols in the sequence. The first and the last
elements are the gap penalties used at the ends of the sequence. The
default gap open penalties are {10,10}.

profalign(..., 'ExtendGap', {E1Value, E2Value}) sets the
penalties for extending a gap in the first and second profile respectively.
E1Value and E2Value can be either scalars or vectors. When using
a vector, the number of elements is one more than the length of the
input profile. Every element indicates the position specific penalty for
extending a gap between two consecutive symbols in the sequence. The
first and the last elements are the gap penalties used at the ends of the
sequence. If ExtendGap is not specified, then extensions to gaps are
scored with the same value as GapOpen.

profalign(..., 'ExistingGapAdjust', ExistingGapAdjustValue),
if ExistingGapAdjustValue is false, turns off the automatic
adjustment based on existing gaps of the position-specific penalties
for opening a gap. When ExistingGapAdjustValue is true, for every
profile position, profalign proportionally lowers the penalty for
opening a gap toward the penalty of extending a gap based on the
proportion of gaps found in the contiguous symbols and on the weight
of the input profile.

profalign(..., 'TerminalGapAdjust', TerminalGapAdjustValue),
when TerminalGapAdjustValue is true, adjusts the penalty for
opening a gap at the ends of the sequence to be equal to the penalty for
extending a gap. Default is false.

profalign(..., 'ShowScore', ShowScoreValue), when
ShowScoreValue is true, displays the scoring space and the winning
path.

Examples 1 Read in sequences and create profiles.

ma1 = ['RGTANCDMQDA';'RGTAHCDMQDA';'RRRAPCDL-DA'];
ma2 = ['RGTHCDLADAT';'RGTACDMADAA'];
p1 = seqprofile(ma1,'gaps','all','counts',true);
p2 = seqprofile(ma2,'counts',true);

2-613

profalign

2 Merge two profiles into a single one by aligning them.

p = profalign(p1,p2);
seqlogo(p)

3 Use the output pointers to generate the multiple alignment.

[p, h1, h2] = profalign(p1,p2);
ma = repmat('-',5,12);
ma(1:3,h1) = ma1;
ma(4:5,h2) = ma2;
disp(ma)

4 Increase the gap penalty before cysteine in the second profile.

gapVec = 10 + [p2(aa2int('C'),:) 0] * 10
p3 = profalign(p1,p2,'gapopen',{10,gapVec});
seqlogo(p3)

5 Add a new sequence to a profile without inserting new gaps into the
profile.

gapVec = [0 inf(1,11) 0];
p4 = profalign(p3,seqprofile('PLHFMSVLWDVQQWP'),...

gapopen',{gapVec,10});
seqlogo(p4)

See Also Bioinformatics Toolbox functions hmmprofalign, multialign, nwalign,
seqprofile, seqconsensus

2-614

proteinplot

Purpose Characteristics for amino acid sequences

Syntax proteinplot (SeqAA)

Arguments
SeqAA Amino acid sequence or a structure with a field Sequence

containing an amino acid sequence.

Description proteinplot (SeqAA) loads an amino acid sequence into the protein plot
GUI. proteinplot is a tool for analyzing a single amino acid sequence.
You can use the results from proteinplot to compare the properties
of several amino acid sequences. It displays smoothed line plots of
various properties such as the hydrophobicity of the amino acids in
the sequence.

Importing Sequences into proteinplot

1 In the MATLAB Command Window, type

proteinplot(Seq_AA)

The proteinplot interface opens and the sequence Seq_AA is shown
in the Sequence text box.

2 Alternatively, type or paste an amino acid sequence into the
Sequence text box.

You can import a sequence with the Import dialog box:

1 Click the Import Sequence button. The Import dialog box opens.

2 From the Import From list, select a variable in the MATLAB
workspace, ASCII text file, FASTA formatted file, GenPept formatted
file, or accession number in the GenPept database.

2-615

proteinplot

Information About the Properties

You can also access information about the properties from the Help
menu.

1 From the Help menu, click References. The Help Browser opens
with a list of properties and references.

2 Scroll down to locate the property you are interested in studying.

Working with Properties

When you click on a property a smoothed plot of the property values
along the sequence will be displayed. Multiple properties can be
selected from the list by holding down Shift or Ctrl while selecting
properties. When two properties are selected, the plots are displayed
using a PLOTYY-style layout, with one y-axis on the left and one on
the right. For all other selections, a single y-axis is displayed. When
displaying one or two properties, the y values displayed are the actual
property values. When three or more properties are displayed, the
values are normalized to the range 0-1.

You can add your own property values by clicking on the Add button
next to the property list. This will open up a dialog that allows you to
specify the values for each of the amino acids. The Display Text box
allows you to specify the text that will be displayed in the selection box
on the main proteinplot window. You can also save the property values
to an m-file for future use by typing a file name into the Filename box.

The Terminal Selection boxes allow you to choose to plot only part of
the sequence. By default all of the sequence is plotted. The default
smoothing method is an unweighted linear moving average with
a window length of five residues. You can change this using the
"Configuration Values" dialog from the Edit menu. The dialog allows
you to select the window length from 5 to 29 residues. You can modify
the shape of the smoothing window by changing the edge weighting
factor. And you can choose the smoothing function to be a linear moving
average, an exponential moving average or a linear Lowess smoothing.

2-616

proteinplot

The File menu allows you to Import a sequence, save the plot that you
have created to a FIG file, you can export the data values in the figure
to a workspace variable or to a MAT file, you can export the figure to a
normal figure window for customizing, and you can print the figure.

The Edit menu allows you to create a new property, to reset the property
values to the default values, and to modify the smoothing parameters
with the Configuration Values menu item.

The View menu allows you to turn the toolbar on and off, and to add
a legend to the plot.

The Tools menu allows you to zoom in and zoom out of the plot, to view
Data Statistics such as mean, minimum and maximum values of the
plot, and to normalize the values of the plot from 0 to 1.

The Help menu allows you to view this document and to see the
references for the sequence properties built into proteinplot

See Also Bioinformatics Toolbox functions: aacount, atomiccomp, molviewer,
molweight, pdbdistplot, seqtool

MATLAB function: plotyy

2-617

proteinpropplot

Purpose Plot properties of amino acid sequence

Syntax proteinpropplot (SeqAA)
proteinpropplot(SeqAA, ...'PropertyTitle',
PropertyTitleValue, ...)
proteinpropplot(SeqAA, ...'Startat', StartatValue, ...)
proteinpropplot(SeqAA, ...'Endat', EndatValue, ...)
proteinpropplot(SeqAA, ...'Smoothing', SmoothingValue, ...)
proteinpropplot(SeqAA, ...'EdgeWeight',
EdgeWeightValue, ...)
proteinpropplot(SeqAA, ...'WindowLength',
WindowLengthValue,

...)

2-618

proteinpropplot

Arguments
SeqAA Amino acid sequence. Enter any of the

following:
• Character string of letters representing an

amino acid

• Vector of integers representing an amino
acid, such as returned by aa2int

• Structure containing a Sequence field that
contains an amino acid sequence, such as
returned by getembl, getgenpept, or getpdb

PropertyTitleValue String that specifies the property to
plot. Default is Hydrophobicity (Kyte
& Doolittle). To display a list of
properties to plot, enter a empty string for
PropertyTitleValue. For example, type:

proteinpropplot(sequence, 'propertytitle', '')

Tip To access references for the properties,
view the proteinpropplot m-file.

StartatValue Integer that specifies the starting point for the
plot from the N-terminal end of the amino acid
sequence SeqAA. Default is 1.

EndatValue Integer that specifies the ending point for the
plot from the N-terminal end of the amino acid
sequence SeqAA. Default is length(SeqAA).

SmoothingValue String the specifies the smoothing method.
Choices are:
• linear (default)

• exponential

• lowess

2-619

proteinpropplot

EdgeWeightValue Value that specifies the edge weight used for
linear and exponential smoothing methods.
Decreasing this value emphasizes peaks in the
plot. Choices are any value ≥0 and ≤1. Default
is 1.

WindowLengthValue Integer that specifies the window length for the
smoothing method. Increasing this value gives
a smoother plot that shows less detail. Default
is 11.

Description proteinpropplot (SeqAA) displays a plot of the hydrophobicity (Kyte
and Doolittle, 1982) of the residues in sequence SeqAA.

proteinpropplot(SeqAA, ...'PropertyName',
PropertyValue, ...) calls proteinpropplot with optional properties
that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed
in single quotation marks and is case insensitive. These property
name/property value pairs are as follows:

proteinpropplot(SeqAA, ...'PropertyTitle',
PropertyTitleValue, ...) specifies a property to plot for
the amino acid sequence SeqAA. Default is Hydrophobicity (Kyte &
Doolittle). To display a list of possible properties to plot, enter an
empty string for PropertyTitleValue. For example, type:

proteinpropplot(sequence, 'propertytitle', '')

Tip To access references for the properties, view the proteinpropplot
m-file.

proteinpropplot(SeqAA, ...'Startat', StartatValue, ...)
specifies the starting point for the plot from the N-terminal end of the
amino acid sequence SeqAA. Default is 1.

2-620

proteinpropplot

proteinpropplot(SeqAA, ...'Endat', EndatValue, ...) specifies
the ending point for the plot from the N-terminal end of the amino acid
sequence SeqAA. Default is length(SeqAA).

proteinpropplot(SeqAA, ...'Smoothing', SmoothingValue, ...)
specifies the smoothing method. Choices are:

• linear (default)

• exponential

• lowess

proteinpropplot(SeqAA, ...'EdgeWeight',
EdgeWeightValue, ...) specifies the edge weight used for linear and
exponential smoothing methods. Decreasing this value emphasizes
peaks in the plot. Choices are any value ≥0 and ≤1. Default is 1.

proteinpropplot(SeqAA, ...'WindowLength',
WindowLengthValue, ...) specifies the window length for the
smoothing method. Increasing this value gives a smoother plot that
shows less detail. Default is 11.

Examples Plotting Hydrophobicity

1 Use the getpdb function to retrieve a protein sequence.

prion = getpdb('1HJM', 'SEQUENCEONLY', true);

2 Plot the hydrophobicity (Kyte and Doolittle, 1982) of the residues
in the sequence.

proteinpropplot(prion)

2-621

proteinpropplot

Plotting Parallel Beta Strand

1 Use the getgenpept function to retrieve a protein sequence.

s = getgenpept('aad50640');

2 Plot the conformational preference for parallel beta strand for the
residues in the sequence.

proteinpropplot(s,'propertytitle','Parallel beta strand')

2-622

proteinpropplot

References [1] Kyte, J., and Doolittle, R.F. (1982). A simple method for displaying
the hydropathic character of a protein. J Mol Biol 157(1), 105–132.

See Also Bioinformatics Toolbox functions: aacount, atomiccomp, molviewer,
molweight, pdbdistplot, proteinplot, ramachandran, seqtool

MATLAB function: plotyy

2-623

quantilenorm

Purpose Quantile normalization over multiple arrays

Syntax NormData = quantilenorm(Data)
NormData = quantilenorm(...,'MEDIAN', true)
NormData = quantilenorm(...,'DISPLAY', true)

Description NormData = quantilenorm(Data), where the columns of Data
correspond to separate chips, normalizes the distributions of the values
in each column.

Note If Data contains NaN values, then NormData will also contain
NaN values at the corresponding positions.

NormData = quantilenorm(...,'MEDIAN', true) takes the median of
the ranked values instead of the mean.

NormData = quantilenorm(...,'DISPLAY', true) plots the
distributions of the columns and of the normalized data.

Examples load yeastdata
normYeastValues = quantilenorm(yeastvalues,'display',1);

See Also malowess, manorm, rmabackadj, rmasummary

2-624

ramachandran

Purpose Draw Ramachandran plot for Protein Data Bank (PDB) data

Syntax ramachandran('PDBid')
ramachandran('File')
ramachandran(PDBData)
Angles = ramachandran(...)
[Angles, Handle] = ramachandran(...)

Arguments
PDBid Unique identifier for a protein structure record. Each

structure in the PDB is represented by a 4-character
alphanumeric identifier. For example, 4hhb is the
identification code for hemoglobin.

File Protein Data Bank (PDB) formatted file (ASCII text
file). Enter a file name, a path and file name, or a URL
pointing to a file. File can also be a MATLAB character
array that contains the text for a PDB file.

PDBData MATLAB structure with PDB formatted data.

Description ramachandran generates a plot of the torsion angle PHI (torsion angle
between the 'C-N-CA-C' atoms) and the torsion angle PSI (torsion
angle between the 'N-CA-C-N' atoms) of the protein sequence.

ramachandran('PDBid') generates the Ramachandran plot for the
protein with PDB code ID.

ramachandran('File') generates the Ramachandran plot for protein
stored in the PDB file File.

ramachandran(PDBData) generates the Ramachandran plot for the
protein stored in the structure PDBData, where PDBData is a MATLAB
structure obtained by using pdbread or getpdb.

Angles = ramachandran(...) returns an array of the torsion angles
PHI, PSI, and OMEGA for the residue sequence.

[Angles, Handle] = ramachandran(...) returns a handle to the plot.

2-625

ramachandran

Examples Generate the Ramachandran plot for the human serum albumin
complexed with octadecanoic acid.

ramachandran('1E7I')

See Also Bioinformatics Toolbox functions: getpdb,molviewer, pdbdistplot,
pdbread

2-626

randfeatures

Purpose Generate randomized subset of features

Syntax [IDX, Z] = randfeatures(X, Group, 'PropertyName',
PropertyValue...)

randfeatures(..., 'Classifier', C)
randfeatures(..., 'ClassOptions', CO)
randfeatures(..., 'PerformanceThreshold', PT)
randfeatures(..., 'ConfidenceThreshold', CT)
randfeatures(..., 'SubsetSize', SS)
randfeatures(..., 'PoolSize', PS)
randfeatures(..., 'NumberOfIndices', N)
randfeatures(..., 'CrossNorm', CN)
randfeatures(..., 'Verbose', VerboseValue)

Description [IDX, Z] = randfeatures(X, Group, 'PropertyName',
PropertyValue...) performs a randomized subset feature search
reinforced by classification. randfeatures randomly generates subsets
of features used to classify the samples. Every subset is evaluated with
the apparent error. Only the best subsets are kept, and they are joined
into a single final pool. The cardinality for every feature in the pool
gives the measurement of the significance.

X contains the training samples. Every column of X is an observed
vector. Group contains the class labels. Group can be a numeric vector or
a cell array of strings; numel(Group) must be the same as the number
of columns in X, and numel(unique(Group)) must be greater than or
equal to 2. Z is the classification significance for every feature. IDX
contains the indices after sorting Z; i.e., the first one points to the most
significant feature.

randfeatures(..., 'Classifier', C) sets the classifier. Options are

'da' (default) Discriminant analysis
'knn' K nearest neighbors

randfeatures(..., 'ClassOptions', CO)is a cell with
extra options for the selected classifier. Defaults are

2-627

randfeatures

{5,'correlation','consensus'} for KNN and {'linear'} for DA. See
knnclassify and classify for more information.

randfeatures(..., 'PerformanceThreshold', PT) sets the correct
classification threshold used to pick the subsets included in the final
pool. Default is 0.8 (80%).

randfeatures(..., 'ConfidenceThreshold', CT) uses the posterior
probability of the discriminant analysis to invalidate classified
subvectors with low confidence. This option is only valid when
Classifier is 'da'. Using it has the same effect as using 'consensus'
in KNN; i.e., it makes the selection of approved subsets very stringent.
Default is 0.95.^(number of classes).

randfeatures(..., 'SubsetSize', SS) sets the number of features
considered in every subset. Default is 20.

randfeatures(..., 'PoolSize', PS) sets the targeted number of
accepted subsets for the final pool. Default is 1000.

randfeatures(..., 'NumberOfIndices', N) sets the number of
output indices in IDX. Default is the same as the number of features.

randfeatures(..., 'CrossNorm', CN) applies independent
normalization across the observations for every feature.
Cross-normalization ensures comparability among different features,
although it is not always necessary because the selected classifier
properties might already account for this. Options are

'none' (default) Intensities are not cross-normalized.
'meanvar' x_new = (x - mean(x))/std(x)
'softmax' x_new = (1+exp((mean(x)-x)/std(x)))^-1
'minmax' x_new = (x - min(x))/(max(x)-min(x))

randfeatures(..., 'Verbose', VerboseValue), when Verbose is
true, turns off verbosity. Default is true.

Examples Find a reduced set of genes that is sufficient for classification of all the
cancer types in the t-matrix NCI60 data set. Load sample data.

2-628

randfeatures

load NCI60tmatrix

Select features.

I = randfeatures(X,GROUP,'SubsetSize',15,'Classifier','da');

Test features with a linear discriminant classifier.

C = classify(X(I(1:25),:)',X(I(1:25),:)',GROUP);
cp = classperf(GROUP,C);
cp.CorrectRate

See Also Bioinformatics Toolbox functions: classperf, crossvalind,
knnclassify, rankfeatures, svmclassify

Statistics Toolbox function: classify

2-629

randseq

Purpose Generate random sequence from finite alphabet

Syntax Seq = randseq(SeqLength)
Seq = randseq(SeqLength, ...'Alphabet', AlphabetValue, ...)
Seq = randseq(SeqLength, ...'Weights', WeightsValue, ...)
Seq = randseq(SeqLength, ...'FromStructure',

FromStructureValue, ...)
Seq = randseq(SeqLength, ...'Case', CaseValue, ...)
Seq = randseq(SeqLength, ...'DataType', DataTypeValue, ...)

Arguments
SeqLength Number of amino acids or nucleotides in

random sequence .

AlphabetValue Property to select the alphabet for the
sequence. Enter 'dna'(default), 'rna', or
'amino'.

WeightsValue Property to specify a weighted random
sequence.

FromStructureValue Property to specify a weighted random
sequence using output structures from the
functions from basecount, dimercount,
codoncount, or aacount.

CaseValue Property to select the case of letters in a
sequence whenAlphabet is 'char'. Values
are'upper' (default) or 'lower'.

DataTypeValue Property to select the data type for a
sequence. Values are 'char'(default) for
letter sequences, and 'uint8' or 'double'
for numeric sequences.

Creates a sequence as an array of DataType.

Description Seq = randseq(SeqLength) creates a random sequence with a length
specified by SeqLength.

2-630

randseq

Seq = randseq(SeqLength, ...'PropertyName',
PropertyValue, ...) calls randseq with optional properties
that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed in
single quotes and is case insensitive. These property name/property
value pairs are as follows:

Seq = randseq(SeqLength, ...'Alphabet', AlphabetValue, ...)
generates a sequence from a specific alphabet.

Seq = randseq(SeqLength, ...'Weights', WeightsValue, ...)
creates a weighted random sequence where the ith letter of the
sequence alphabet is selected with weight W(i). The weight vector is
usually a probability vector or a frequency count vector. Note that the
ith element of the nucleotide alphabet is given by int2nt(i), and the
ith element of the amino acid alphabet is given by int2aa(i).

Seq = randseq(SeqLength,
...'FromStructure', FromStructureValue, ...) creates a
weighted random sequence with weights given by the output structure
from basecount, dimercount, codoncount, or aacount.

Seq = randseq(SeqLength, ...'Case', CaseValue, ...) specifies
the case for a letter sequence.

Seq = randseq(SeqLength, ...'DataType', DataTypeValue, ...)
specifies the data type for the sequence array.

Examples Generate a random DNA sequence.

randseq(20)

ans =
TAGCTGGCCAAGCGAGCTTG

Generate a random RNA sequence.

randseq(20,'alphabet','rna')

ans =

2-631

randseq

GCUGCGGCGGUUGUAUCCUG

Generate a random protein sequence.

randseq(20,'alphabet','amino')

ans =
DYKMCLYEFGMFGHFTGHKK

See Also Statistics Toolbox functions: hmmgenerate, randsample

MATLAB functions: rand, randperm

2-632

rankfeatures

Purpose Rank key features by class separability criteria

Syntax [IDX, Z] = rankfeatures(X, Group)
[IDX, Z] = rankfeatures(X, Group, ...'Criterion',
CriterionValue, ...)
[IDX, Z] = rankfeatures(X, Group, ...'CCWeighting', ALPHA,

...)
[IDX, Z] = rankfeatures(X, Group, ...'NWeighting',
BETA, ...)
[IDX, Z] = rankfeatures(X, Group, ...'NumberOfIndices', N,

...)
[IDX, Z] = rankfeatures(X, Group, ...'CrossNorm', CN, ...)

Description [IDX, Z] = rankfeatures(X, Group) ranks the features in X using
an independent evaluation criterion for binary classification. X is a
matrix where every column is an observed vector and the number of
rows corresponds to the original number of features. Group contains
the class labels.

IDX is the list of indices to the rows in X with the most significant
features. Z is the absolute value of the criterion used (see below).

Group can be a numeric vector or a cell array of strings; numel(Group)
is the same as the number of columns in X, and numel(unique(Group))
is equal to 2.

[IDX, Z] = rankfeatures(X, Group, ...'PropertyName',
PropertyValue, ...) calls rankfeatures with optional properties
that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed
in single quotation marks and is case insensitive. These property
name/property value pairs are as follows:

[IDX, Z] = rankfeatures(X, Group, ...'Criterion',
CriterionValue, ...) sets the criterion used to assess the
significance of every feature for separating two labeled groups. Choices
are:

2-633

rankfeatures

• 'ttest' (default) — Absolute value two-sample t-test with pooled
variance estimate.

• 'entropy' — Relative entropy, also known as Kullback-Lieber
distance or divergence.

• 'brattacharyya' — Minimum attainable classification error or
Chernoff bound.

• 'roc' — Area between the empirical receiver operating characteristic
(ROC) curve and the random classifier slope.

• 'wilcoxon' — Absolute value of the u-statistic of a two-sample
unpaired Wilcoxon test, also known as Mann-Whitney.

Note 'ttest', 'entropy', and 'brattacharyya' assume normal
distributed classes while 'roc' and 'wilcoxon' are nonparametric
tests. All tests are feature independent.

[IDX, Z] = rankfeatures(X, Group, ...'CCWeighting', ALPHA,
...) uses correlation information to outweigh the Z value of potential
features using Z * (1-ALPHA*(RHO)), where RHO is the average of
the absolute values of the cross-correlation coefficient between the
candidate feature and all previously selected features. ALPHA sets the
weighting factor. It is a scalar value between 0 and 1. When ALPHA is 0
(default) potential features are not weighted. A large value of RHO (close
to 1) outweighs the significance statistic; this means that features that
are highly correlated with the features already picked are less likely
to be included in the output list.

[IDX, Z] = rankfeatures(X, Group, ...'NWeighting', BETA,
...) uses regional information to outweigh the Z value of potential
features using Z * (1-exp(-(DIST/BETA).^2)), where DIST is the
distance (in rows) between the candidate feature and previously
selected features. BETA sets the weighting factor. It is greater than or
equal to 0. When BETA is 0 (default) potential features are not weighted.
A small DIST (close to 0) outweighs the significance statistics of only

2-634

rankfeatures

close features. This means that features that are close to already picked
features are less likely to be included in the output list. This option is
useful for extracting features from time series with temporal correlation.

BETA can also be a function of the feature location, specified using @ or
an anonymous function. In both cases rankfeatures passes the row
position of the feature to BETA() and expects back a value greater
than or equal to 0.

Note You can use 'CCWeighting' and 'NWeighting' together.

[IDX, Z] = rankfeatures(X, Group, ...'NumberOfIndices', N,
...) sets the number of output indices in IDX. Default is the same as
the number of features when ALPHA and BETA are 0, or 20 otherwise.

[IDX, Z] = rankfeatures(X, Group, ...'CrossNorm', CN, ...)
applies independent normalization across the observations for every
feature. Cross-normalization ensures comparability among different
features, although it is not always necessary because the selected
criterion might already account for this. Choices are:

• 'none' (default) — Intensities are not cross-normalized.

• 'meanvar' — x_new = (x - mean(x))/std(x)

• 'softmax' — x_new = (1+exp((mean(x)-x)/std(x)))^-1

• 'minmax' — x_new = (x - min(x))/(max(x)-min(x))

Examples 1 Find a reduced set of genes that is sufficient for differentiating breast
cancer cells from all other types of cancer in the t-matrix NCI60 data
set. Load sample data.

load NCI60tmatrix

2 Get a logical index vector to the breast cancer cells.

BC = GROUP == 8;

2-635

rankfeatures

3 Select features.

I = rankfeatures(X,BC,'NumberOfIndices',12);

4 Test features with a linear discriminant classifier.

C = classify(X(I,:)',X(I,:)',double(BC));
cp = classperf(BC,C);
cp.CorrectRate

ans =

1

5 Use cross-correlation weighting to further reduce the required
number of genes.

I = rankfeatures(X,BC,'CCWeighting',0.7,'NumberOfIndices',8);
C = classify(X(I,:)',X(I,:)',double(BC));
cp = classperf(BC,C);
cp.CorrectRate

ans =

1

6 Find the discriminant peaks of two groups of signals with Gaussian
pulses modulated by two different sources.

load GaussianPulses

f = rankfeatures(y',grp,'NWeighting',@(x) x/10+5,'NumberOfIndices',5);

plot(t,y(grp==1,:),'b',t,y(grp==2,:),'g',t(f),1.35,'vr')

2-636

rankfeatures

See Also Bioinformatics Toolbox functions: classperf, crossvalind,
randfeatures, svmclassify

Statistics Toolbox function: classify

2-637

rebasecuts

Purpose Find restriction enzymes that cut protein sequence

Syntax [Enzymes, Sites] = rebasecuts(SeqNT)
rebasecuts(SeqNT, Group)
rebasecuts(SeqNT, [Q, R])
rebasecuts(SeqNT, S)

Arguments
SeqNT Nucleotide sequence.

Enzymes Cell array with the names of restriction enzymes
from REBASE Version 412.

Sites Vector of cut sites with the base number before
every cut relative to the sequence.

Group Cell array with the names of valid restriction
enzymes.

Q, R, S Base positions.

Description [Enzymes, Sites] = rebasecuts(SeqNT) finds all the restriction
enzymes that cut a nucleotide sequence (SeqNT).

rebasecuts(SeqNT, Group) limits the search to a specified list of
enzymes (Group).

rebasecuts(SeqNT, [Q, R]) limits the search to those enzymes that
cut after a specified base position (Q) and before a specified base position
(R) relative to the sequence.

rebasecuts(SeqNT, S) limits the search to those enzymes that cut just
after a specified base position (S).

REBASE, the Restriction Enzyme Database, is a collection of
information about restriction enzymes and related proteins. For more
information about REBASE, see

http://rebase.neb.com/rebase/rebase.html

2-638

http://rebase.neb.com/rebase/rebase.html

rebasecuts

Example 1 Enter a nucleotide sequence.

seq = 'AGAGGGGTACGCGCTCTGAAAAGCGGGAACCTCGTGGCGCTTTATTAA'

2 Look for all possible cleavage sites in the sequence seq.

[enzymes sites] = rebasecuts(seq)

3 Find where restriction enzymes CfoI and Tru9I cut the sequence.

[enzymes sites] = rebasecuts(seq, {'CfoI','Tru9I'})

4 Search for any possible enzymes that cut after base 7.

enzymes = rebasecuts(seq, 7)

5 Get the subset of enzymes that cut between base 11 and 37.

enzymes = rebasecuts(seq, [11 37])

See Also Bioinformatics Toolbox functions: cleave, restrict, seq2regexp,
seqshowwords

MATLAB function: regexp

2-639

redgreencmap

Purpose Create red and green color map

Syntax redgreencmap(Length)
redgreencmap(..., 'Interpolation', InterpolationValue, ...)

Arguments
Length Length of the color map. Enter either 256 or

64. Default is the length of the color map of
the current figure.

InterpolationValue Property that lets you set the algorithm for
color interpolation. Choices are:
• 'linear'

• 'quadratic'

• 'cubic'

• 'sigmoid' (default)

Note The sigmoid interpolation is tanh.

Description redgreencmap(Length) returns an Length-by-3 matrix containing a red
and green color map. Low values are bright green, values in the center
of the map are black, and high values are red. Enter either 256 or 64 for
Length. If Length is empty, the length of the map will be the same as
the length of the color map of the current figure.

redgreencmap(..., 'PropertyName', PropertyValue, ...) defines
optional properties that use property name/value pairs in any order.
These property name/value pairs are as follows:

redgreencmap(..., 'Interpolation', InterpolationValue, ...) lets
you set the algorithm for color interpolation. Choices are:

• 'linear'

2-640

redgreencmap

• 'quadratic'

• 'cubic'

• 'sigmoid' (default)

Note The sigmoid interpolation is tanh.

Examples Reset the color map of the current figure.

pd =gprread('mouse_a1pd.gpr')
maimage(pd,'F635 Median')
colormap(redgreencmap)

See Also Bioinformatics Toolbox function: clustergram

MATLAB functions: colormap, colormapeditor

2-641

restrict

Purpose Split nucleotide sequence at restriction site

Syntax Fragments = restrict(SeqNT, Enzyme)
Fragments = restrict(SeqNT, Pattern, Position)
[Fragments, CuttingSites] = restrict(...)
[Fragments, CuttingSites, Lengths] = restrict(...)
... = restrict(..., 'PartialDigest', PartialDigestValue)

Arguments
SeqNT Nucleotide sequence. Enter either a

character string with the characters A, T, G,
C, and ambiguous characters R, Y, K, M, S, W, B,
D, H, V, N, or a vector of integers. You can also
enter a structure with the field Sequence.

Enzyme Enter the name of a restriction enzyme from
REBASE Version 412.

Pattern Enter a short nucleotide pattern. Pattern
can be a regular expression.

Position Defines the position on Pattern where the
sequence is cut. Position=0 corresponds to
the 5’ end of the Pattern.

PartialDigestValue Property to specify a probability for partial
digestion. Enter a value from 0 to 1.

Description Fragments = restrict(SeqNT, Enzyme) cuts a sequence (SeqNT) into
fragments at the restriction sites of a restriction enzyme (Enzyme). The
returned values are stored in a cell array of sequences (Fragments).

Fragments = restrict(SeqNT, Pattern, Position) cuts a sequence
(SeqNT) into fragments at restriction sites specified by a nucleotide
pattern (Pattern).

[Fragments, CuttingSites] = restrict(...) returns a numeric
vector with the indices representing the cutting sites. A 0 (zero) is
added to the list so numel(Fragments)==numel(CuttingSites). You

2-642

restrict

can use CuttingSites+1 to point to the first base of every fragment
respective to the original sequence.

[Fragments, CuttingSites, Lengths] = restrict(...) returns a
numeric vector with the lengths of every fragment.

... = restrict(..., 'PartialDigest', PartialDigestValue)
simulates a partial digest where each restriction site in the sequence
has a probability (PartialDigestValue) of being cut.

REBASE, the restriction enzyme database, is a collection of information
about restriction enzymes and related proteins. For more information
about REBASE or to search REBASE for the name of a restriction
enzyme, go to the REBASE Web site at

http://rebase.neb.com/rebase/rebase.html

Examples 1 Enter a nucleotide sequence.

Seq = 'AGAGGGGTACGCGCTCTGAAAAGCGGGAACCTCGTGGCGCTTTATTAA';

2 Use the recognition pattern (sequence) GCGC with the point of
cleavage at position 3 to cleave a nucleotide sequence.

fragmentsPattern = restrict(Seq,'GCGC',3)

fragmentsPattern =
'AGAGGGGTACGCG'
'CTCTGAAAAGCGGGAACCTCGTGGCG'
'CTTTATTAA'

3 Use the restriction enzyme HspAI (recognition sequence GCGC with
the point of cleavage at position 1) to cleave a nucleotide sequence.

fragmentsEnzyme = restrict(Seq,'HspAI')

fragmentsEnzyme =
'AGAGGGGTACG'
'CGCTCTGAAAAGCGGGAACCTCGTGG'
'CGCTTTATTAA'

2-643

http://rebase.neb.com/rebase/rebase.html

restrict

4 Use a regular expression for the enzyme pattern.

fragmentsRegExp = restrict(Seq,'GCG[^C]',3)

fragmentsRegExp =

'AGAGGGGTACGCGCTCTGAAAAGCG'
'GGAACCTCGTGGCGCTTTATTAA'

5 Capture the cutting sites and fragment lengths with the fragments.

[fragments, cut_sites, lengths] = restrict(Seq,'HspAI')

fragments =
'AGAGGGGTACG'
'CGCTCTGAAAAGCGGGAACCTCGTGG'
'CGCTTTATTAA'

cut_sites =
0

11
37

lengths =
11
26
11

See Also Bioinformatics Toolbox functions: cleave, rebasecuts, seq2regexp,
seqshowwords

MATLAB function: regexp

2-644

revgeneticcode

Purpose Reverse mapping for genetic code

Syntax map = revgeneticcode
revgeneticcode(GeneticCode)
revgeneticcode(..., 'Alphabet', AlphabetValue, ...)
revgeneticcode(..., 'ThreeLetterCodes',
ThreeLetterCodesValue,

...)

Arguments GeneticCode Genetic code for translating nucleotide
codons to amino acids. Enter a code number
or code name from the table . If you use a
code name, you can truncate the name to
the first two characters of the name.

AlphabetValue Property to select the nucleotide alphabet.
Enter either 'dna' or 'rna'. The default
value is 'dna'.

ThreeLetterCodesValueProperty to select one- or three-letter amino
acid codes. Enter true for three-letter codes
or false for one-letter codes.

Genetic Code

Code
Number

Code Name

1 Standard

2 Vertebrate Mitochondrial

3 Yeast Mitochondrial

4 Mold, Protozoan, Coelenterate Mitochondrial,
and Mycoplasma/Spiroplasma

5 Invertebrate Mitochondrial

2-645

revgeneticcode

Code
Number

Code Name

6 Ciliate, Dasycladacean, and Hexamita Nuclear

9 Echinoderm Mitochondrial

10 Euplotid Nuclear

11 Bacterial and Plant Plastid

12 Alternative Yeast Nuclear

13 Ascidian Mitochondrial

14 Flatworm Mitochondrial

15 Blepharisma Nuclear

16 Chlorophycean Mitochondrial

21 Trematode Mitochondrial

22 Scenedesmus Obliquus Mitochondrial

23 Thraustochytrium Mitochondrial

Description map = revgeneticcode returns a structure containing the reverse
mapping for the standard genetic code.

revgeneticcode(GeneticCode) returns a structure containing the
reverse mapping for an alternate genetic code.

revgeneticcode(..., 'PropertyName', PropertyValue, ...)
calls revgeneticcode with optional properties that use property
name/property value pairs. You can specify one or more properties in
any order. Each PropertyName must be enclosed in single quotes and
is case insensitive. These property name/property value pairs are as
follows:

revgeneticcode(..., 'Alphabet', AlphabetValue, ...) defines
the nucleotide alphabet to use in the map.

revgeneticcode(..., 'ThreeLetterCodes',
ThreeLetterCodesValue, ...) returns the mapping structure with

2-646

revgeneticcode

three-letter amino acid codes as field names instead of the default
single-letter codes if ThreeLetterCodes is true.

Examples moldcode = revgeneticcode(4,'Alphabet','rna');
wormcode = revgeneticcode('Flatworm Mitochondrial',...

'ThreeLetterCodes',true);

map = revgeneticcode

map =

Name: 'Standard'
A: {'GCT' 'GCC' 'GCA' 'GCG'}
R: {'CGT' 'CGC' 'CGA' 'CGG' 'AGA' 'AGG'}
N: {'AAT' 'AAC'}
D: {'GAT' 'GAC'}
C: {'TGT' 'TGC'}
Q: {'CAA' 'CAG'}
E: {'GAA' 'GAG'}
G: {'GGT' 'GGC' 'GGA' 'GGG'}
H: {'CAT' 'CAC'}
I: {'ATT' 'ATC' 'ATA'}
L: {'TTA' 'TTG' 'CTT' 'CTC' 'CTA' 'CTG'}
K: {'AAA' 'AAG'}
M: {'ATG'}
F: {'TTT' 'TTC'}
P: {'CCT' 'CCC' 'CCA' 'CCG'}
S: {'TCT' 'TCC' 'TCA' 'TCG' 'AGT' 'AGC'}
T: {'ACT' 'ACC' 'ACA' 'ACG'}
W: {'TGG'}
Y: {'TAT' 'TAC'}
V: {'GTT' 'GTC' 'GTA' 'GTG'}

Stops: {'TAA' 'TAG' 'TGA'}
Starts: {'TTG' 'CTG' 'ATG'}

References [1] NCBI Web page describing genetic codes:

2-647

revgeneticcode

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

See Also Bioinformatics Toolbox functions: aa2nt, aminolookup, baselookup,
geneticcode, nt2aa

2-648

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

rmabackadj

Purpose Perform background adjustment on Affymetrix microarray probe-level
data using Robust Multi-array Average (RMA) procedure

Syntax BackAdjustedMatrix = rmabackadj(PMData)
BackAdjustedMatrix = rmabackadj(..., 'Method',
MethodValue, ...)
BackAdjustedMatrix = rmabackadj(..., 'Truncate',

TruncateValue, ...)
BackAdjustedMatrix = rmabackadj(..., 'Showplot',

ShowplotValue, ...)

Arguments
PMData Matrix of intensity values where each row

corresponds to a perfect match (PM) probe and
each column corresponds to an Affymetrix CEL file.
(Each CEL file is generated from a separate chip.
All chips should be of the same type.)

MethodValue Property to control the estimation method for the
background adjustment model parameters. Enter
either 'RMA' (to use estimation method described by
Bolstad, 2005) or 'MLE' (to estimate the parameters
using maximum likelihood). Default is 'RMA'.

2-649

http://www.bioconductor.org/repository/devel/vignette/builtinMethods.pdf

rmabackadj

TruncateValue Property to control the background noise model.
Enter either true (use a truncated Gaussian
distribution) or false (use a nontruncated Gaussian
distribution). Default is true.

ShowplotValue Property to control the plotting of a histogram
showing the distribution of PM probe intensity
values (blue) and the convoluted probability
distribution function (red), with estimated
parameters. Enter either 'all' (plot a histogram
for each column or chip) or specify a subset of
columns (chips) by entering the column number, list
of numbers, or range of numbers.

For example:

• ..., 'Showplot', 3, ...) plots the
intensity values in column 3.

• ..., 'Showplot', [3,5,7], ...) plots the
intensity values in columns 3, 5, and 7.

• ..., 'Showplot', 3:9, ...) plots the
intensity values in columns 3 to 9.

Return
Values

BackAdjustedMatrix Matrix of background-adjusted probe intensity
values.

Description BackAdjustedMatrix = rmabackadj(PMData) returns the background
adjusted values of probe intensity values in the matrix, PMData. Note
that each row in PMData corresponds to a perfect match (PM) probe and
each column in PMData corresponds to an Affymetrix CEL file. (Each
CEL file is generated from a separate chip. All chips should be of the
same type.) Details on the background adjustment are described by
Bolstad, 2005.

2-650

http://www.bioconductor.org/repository/devel/vignette/builtinMethods.pdf

rmabackadj

BackAdjustedMatrix = rmabackadj(..., 'PropertyName',
PropertyValue, ...) calls rmabackadj with optional properties that
use property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property
value pairs are as follows:

BackAdjustedMatrix = rmabackadj(..., 'Method',
MethodValue, ...) controls the estimation method for the background
adjustment model parameters. When MethodValue is 'RMA',
rmabackadj implements the estimation method described by Bolstad,
2005. When MethodValue is 'MLE', rmabackadj estimates the
parameters using maximum likelihood. Default is 'RMA'.

BackAdjustedMatrix = rmabackadj(..., 'Truncate',
TruncateValue, ...) controls the background noise model used.
When TruncateValue is false, rmabackadj uses nontruncated
Gaussian as the background noise model. Default is true.

BackAdjustedMatrix = rmabackadj(..., 'Showplot',
ShowplotValue, ...) lets you plot a histogram showing the
distribution of PM probe intensity values (blue) and the convoluted
probability distribution function (red), with estimated parameters.
When ShowplotValue is 'all', rmabackadj plots a histogram for each
column or chip. When ShowplotValue is a number, list of numbers,
or range of numbers, rmabackadj plots a histogram for the indicated
column number (chip).

For example:

• ..., 'Showplot', 3,...) plots the intensity values in column 3
of Data.

• ..., 'Showplot', [3,5,7],...) plots the intensity values in
columns 3, 5, and 7 of Data.

• ..., 'Showplot', 3:9,...) plots the intensity values in columns
3 to 9 of PMData.

2-651

http://www.bioconductor.org/repository/devel/vignette/builtinMethods.pdf

rmabackadj

Examples 1 Load a MAT file, included with Bioinformatics Toolbox, which
contains Affymetrix probe-level data, including pmMatrix, a matrix of
PM probe intensity values from multiple CEL files.

load prostatecancerrawdata

2 Perform background adjustment on the PM probe intensity
values in the matrix, pmMatrix, creating a new matrix,
BackgroundAdjustedMatrix.

2-652

rmabackadj

BackgroundAdjustedMatrix = rmabackadj(pmMatrix);

3 Perform background adjustment on the PM probe intensity values
in only column 3 of the matrix, pmMatrix, creating a new matrix,
BackgroundAdjustedChip3.

BackgroundAdjustedChip3 = rmabackadj(pmMatrix(:,3));

The prostatecancerrawdata.mat file used in the previous example
contains data from Best et al., 2005.

References [1] Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis,
K.J., Scherf, U., Speed, T.P. (2003). Exploration, Normalization, and
Summaries of High Density Oligonucleotide Array Probe Level Data.
Biostatistics 4, 249–264.

[2] Bolstad, B. (2005). “affy: Built-in Processing Methods”
http://www.bioconductor.org/repository/devel/vignette/builtinMethods.pdf

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R.,
Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea,
M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik,
R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F.
(2005). Molecular alterations in primary prostate cancer after androgen
ablation therapy. Clinical Cancer Research 11, 6823–6834.

See Also affyinvarsetnorm, affyread, celintensityread, probelibraryinfo,
probesetlink, probesetlookup, probesetvalues, quantilenorm,
rmasummary

2-653

http://www.bioconductor.org/repository/devel/vignette/builtinMethods.pdf

rmasummary

Purpose Calculate gene (probe set) expression values from Affymetrix microarray
probe-level data using Robust Multi-array Average (RMA) procedure

Syntax ExpressionMatrix = rmasummary(ProbeIndices, Data)
ExpressionMatrix = rmasummary(..., 'Output', OutputValue)

Arguments
ProbeIndices Column vector of probe indices. The convention

for probe indices is, for each probe set, to label
each probe 0 to N - 1, where N is the number of
probes in the probe set.

Data Matrix of natural-scale intensity values where
each row corresponds to a perfect match (PM)
probe and each column corresponds to an
Affymetrix CEL file. (Each CEL file is generated
from a separate chip. All chips should be of the
same type.)

OutputValue Property to control the scale of the returned gene
expression values. OutputValue can be:

• 'log'

• 'log2'

• 'log10'

• 'natural'

• @functionname

In the last instance, the data is transformed as
defined by the function functionname. Default
is 'log2'.

Description ExpressionMatrix = rmasummary(ProbeIndices, Data) returns gene
(probe set) expression values after calculating them from natural-scale
probe intensities in the matrix Data, using the column vector of probe

2-654

rmasummary

indices, ProbeIndices. Note that each row in Data corresponds to
a perfect match (PM) probe, and each column corresponds to an
Affymetrix CEL file. (Each CEL file is generated from a separate chip.
All chips should be of the same type.) Note that the column vector
ProbeIndices designates probes within each probe set by labeling each
probe 0 to N - 1, where N is the number of probes in the probe set. Note
that each row in ExpressionMatrix corresponds to a gene (probe set)
and each column in ExpressionMatrix corresponds to an Affymetrix
CEL file, which represents a single chip.

For a given probe set n, with J probe pairs, let Yijn denote the
background adjusted, base 2 log transformed and quantile-normalized
PM probe intensity value of chip i and probe j. Yijn follows a linear
additive model:

Yijn = Uin + Ajn + Eijn; i = 1, ..., I; j = 1, ..., J; n = 1, ..., N

where:

Uin = gene expression of the probe set n on chip i

Ajn = probe affinity effect for the jth probe in the probe set

Eijn = residual for the jth probe on the ith chip

The RMA methods assumes A1 + A2 + ... + AJ = 0 for all probe sets. A
robust procedure, median polish, is used to estimate Ui as the log scale
measure of expression.

Note There is no column in ExpressionMatrix that contains probe set
or gene information.

ExpressionMatrix = rmasummary(..., 'PropertyName',
PropertyValue, ...) defines optional properties that use property

2-655

rmasummary

name/value pairs in any order. These property name/value pairs are
as follows:

ExpressionMatrix = rmasummary(..., 'Output', OutputValue)
controls the scale of the returned gene expression values. OutputValue
can be:

• 'log'

• 'log2'

• 'log10'

• 'natural'

• @functionname

In the last instance, the data is transformed as defined by the function
functionname. Default is 'log2'.

Examples 1 Load a MAT file, included with Bioinformatics Toolbox, which
contains Affymetrix data variables, including pmMatrix, a matrix of
PM probe intensity values from multiple CEL files.

load prostatecancerrawdata

2 Perform background adjustment on the PM probe intensity values
in the matrix, pmMatrix, using the rmabackadj function, thereby
creating a new matrix, BackgroundAdjustedMatrix.

BackgroundAdjustedMatrix = rmabackadj(pmMatrix);

3 Normalize the data in BackgroundAdjustedMatrix, using the
quantilenorm function.

NormMatrix = quantilenorm(BackgroundAdjustedMatrix);

4 Calculate gene expression values from the probe intensities in
NormMatrix, creating a new matrix, ExpressionMatrix. (You will

2-656

rmasummary

use the probeIndices column vector provided to supply information
on the probe indices.)

ExpressionMatrix = rmasummary(probeIndices, NormMatrix);

The prostatecancerrawdata.mat file used in the previous example
contains data from Best et al., 2005.

References [1] Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis,
K.J., Scherf, U., Speed, T.P. (2003). Exploration, Normalization, and
Summaries of High Density Oligonucleotide Array Probe Level Data.
Biostatistics. 4, 249-264.

[2] Mosteller, F., and Tukey, J. (1977). Data Analysis and Regression
(Reading, Massachusetts: Addison-Wesley Publishing Company), pp.
165-202.

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R.,
Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea,
M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik,
R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F.
(2005). Molecular alterations in primary prostate cancer after androgen
ablation therapy. Clinical Cancer Research 11, 6823-6834.

See Also affyinvarsetnorm, celintensityread, mainvarsetnorm, malowess,
manorm, quantilenorm, rmabackadj

2-657

rna2dna

Purpose Convert RNA sequence of nucleotides to DNA sequence

Syntax SeqDNA = rna2dna(SeqRNA)

Arguments
SeqRNA Nucleotide sequence for RNA. Enter a character string

with the characters A, C, U, G, and the ambiguous
nucleotide bases N, R, Y, K, M, S, W, B, D, H, and V.

Description SeqDNA = rna2dna(SeqRNA) converts any uracil nucleotides in an RNA
sequence into thymine (U-->T), and returns in the same format as DNA.
For example, if the RNA sequence is an integer sequence then so is
SeqRNA.

Example rna2dna('ACGAUGAGUCAUGCUU')

ans =
ACGATGAGTCATGCTT

See Also Bioinformatics Toolbox function: dna2rna

MATLAB functions: strrep, regexp

2-658

samplealign

Purpose Align two data sets containing sequential observations by introducing
gaps

Syntax [I, J] = samplealign(X, Y)
[I, J] = samplealign(X, Y, ...'Band', BandValue, ...)
[I, J] = samplealign(X, Y, ...'Width', WidthValue, ...)
[I, J] = samplealign(X, Y, ...'Gap', GapValue, ...)
[I, J] = samplealign(X, Y, ...'Quantile',
QuantileValue, ...)
[I, J] = samplealign(X, Y, ...'Distance',
DistanceValue, ...)
[I, J] = samplealign(X, Y, ...'Weights', WeightsValue, ...)
[I, J] = samplealign(X, Y, ...'ShowConstraints',

ShowConstraintsValue, ...)
[I, J] = samplealign(X, Y, ...'ShowNetwork',

ShowNetworkValue, ...)
[I, J] = samplealign(X, Y, ...'ShowAlignment',

ShowAlignmentValue, ...)

2-659

samplealign

Arguments X, Y Matrices of data where rows correspond
to observations or samples, and columns
correspond to features or dimensions. X
and Y can have a different number of rows,
but they must have the same number of
columns. The first column is the reference
dimension and must contain unique
values in ascending order. The reference
dimension could contain sample indices of
the observations or a measurable value,
such as time.

BandValue Either of the following:
• Scalar.

• Function specified using @(z), where
z is the mid-point between a given
observation in one data set and a given
observation in the other data set.

BandValue specifies a maximum allowable
distance between observations (along the
reference dimension only) in the two data
sets, thus limiting the number of potential
matches between observations in two data
sets. If S is the value in the reference
dimension for a given observation (row)
in one data set, then that observation is
matched only with observations in the other
data set whose values in the reference
dimension fall within S ± BandValue. Then,
only these potential matches are passed to
the algorithm for further scoring. Default
BandValue is Inf.

2-660

samplealign

WidthValue Either of the following:
• Two-element vector, [U, V]

• Scalar that is used for both U and V

WidthValue limits the number of potential
matches between observations in two data
sets; that is, each observation in X is scored
to the closest U observations in Y, and each
observation in Y is scored to the closest V
observations in X. Then, only these potential
matches are passed to the algorithm for
further scoring. Closeness is measured
using only the first column (reference
dimension) in each data set. Default is Inf if
'Band' is specified; otherwise default is 10.

2-661

samplealign

GapValue Any of the following:
• Cell array, {G, H}, where G is either a

scalar or a function handle specified
using @(X), and H is either a scalar or a
function handle specified using @(Y). The
functions @(X) and @(Y) must calculate
the penalty for each observation (row)
when it is matched to a gap in the other
data set. The functions @(X) and @(Y)
must return a column vector with the
same number of rows as X or Y, containing
the gap penalty for each observation
(row).

• Single function handle specified using
@(Z), which is used for both G and H. The
function @(Z) must calculate the penalty
for each observation (row) in both X and Y
when it is matched to a gap in the other
data set. The function @(Z) must take as
arguments X and Y. The function @(Z)
must return a column vector with the
same number of rows as X or Y, containing
the gap penalty for each observation
(row).

• Scalar that is used for both G and H.

GapValue specifies the position-dependent
terms for assigning gap penalties. The
calculated value, GPX, is the gap penalty for
matching observations from the first data
set X to gaps inserted in the second data set
Y, and is the product of two terms: GPX = G *
QMS. The term G takes its value as a function
of the observations in X. Similarly, GPY is
the gap penalty for matching observations
from Y to gaps inserted in X, and is the
product of two terms: GPY = H * QMS. The
term H takes its value as a function of the
observations in Y. By default, the term QMS
is the 0.75 quantile of the score for the pairs
of observations that are potential matches
(that is, pairs that comply with the 'Band'
and 'Width' constraints). Default GapValue
is 1.

2-662

samplealign

QuantileValue Scalar between 0 and 1 that specifies the
quantile value used to calculate the term
QMS, which is used by the 'Gap' property to
calculate gap penalties. Default is 0.75.

DistanceValue Function handle specified using @(R,S).
The function @(R,S) must:

• Calculate the distance between pairs of
observations that are potential matches.

• Take as arguments, R and S, matrices
that have the same number of rows
and columns, and whose paired rows
represent all potential matches of
observations in X and Y respectively.

• Return a column vector of positive values
with the same number of elements as
rows in R and S.

Default is the Euclidean distance between
the pairs.

Caution All columns in X and Y, including
the reference dimension, are considered
when calculating distances. If you do not
want to include the reference dimension in
the distance calculations, use the 'Weight'
property to exclude it.

2-663

samplealign

WeightsValue Either of the following:
• Logical row vector with the same number

of elements as columns in X and Y, that
specifies columns in X and Y.

• Numeric row vector with the same
number of elements as columns in X and
Y, that specifies the relative weights of
the columns (features).

This property controls the
inclusion/exclusion of columns (features) or
the emphasis of columns (features) when
calculating the distance score between
observations that are potential matches,
that is, when using the 'Distance'
property. Default is a logical row vector with
all elements set to true.

Tip Using a numeric row vector for
WeightsValue and setting some values to 0
can simplify the distance calculation when
the data sets have many columns (features).

Note The weight values are not considered
when using the 'Band', 'Width', or 'Gap'
property.

2-664

samplealign

ShowConstraintsValue Controls the display of the search space
constrained by the specified 'Band' and
'Width' input parameters, thereby giving
an indication of the memory required to
run the algorithm with the specific 'Band'
and 'Width' parameters on your data sets.
Choices are true or false (default).

ShowNetworkValue Controls the display of the dynamic
programming network, the match scores,
the gap penalties, and the winning path.
Choices are true or false (default).

ShowAlignmentValue Controls the display of the first and second
columns of the X and Y data sets in the
abscissa and the ordinate respectively, of
a two-dimensional plot. Choices are true,
false (default), or an integer specifying a
column of the X and Y data sets to plot as
the ordinate.

Return
Values

I Column vector containing indices of rows
(observations) in X that match to a row
(observation) in Y. Missing indices indicate
that row (observation) is matched to a gap.

J Column vector containing indices of rows
(observations) in Y that match to a row
(observation) in X. Missing indices indicate
that row (observation) is matched to a gap.

Description [I, J] = samplealign(X, Y) aligns the observations in two matrices
of data, X and Y, by introducing gaps. X and Y are matrices of data where
rows correspond to observations or samples, and columns correspond
to features or dimensions. X and Y can have different number of rows,
but must have the same number of columns. The first column is the

2-665

samplealign

reference dimension and must contain unique values in ascending
order. The reference dimension could contain sample indices of the
observations or a measurable value, such as time. The samplealign
function uses a dynamic programming algorithm to minimize the sum
of positive scores resulting from pairs of observations that are potential
matches and the penalties resulting from the insertion of gaps. Return
values I and J are column vectors containing indices that indicate the
matches for each row (observation) in X and Y respectively.

Tip If you do not specify return values, samplealign does not run
the dynamic programming algorithm. Running samplealign without
return values, but setting the 'ShowConstraints', 'ShowNetwork', or
'ShowAlignment' property to true, lets you explore the constrained
search space, the dynamic programming network, or the aligned
observations, without running into potential memory problems.

[I, J] = samplealign(X, Y, ...'PropertyName',
PropertyValue, ...) calls samplealign with optional properties that
use property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property
value pairs are as follows:

[I, J] = samplealign(X, Y, ...'Band', BandValue, ...)
specifies a maximum allowable distance between observations (along
the reference dimension only) in the two data sets, thus limiting the
number of potential matches between observations in the two data sets.
If S is the value in the reference dimension for a given observation (row)
in one data set, then that observation is matched only with observations
in the other data set whose values in the reference dimension fall
within S ± BandValue. Then, only these potential matches are passed
to the algorithm for further scoring. BandValue can be a scalar or a
function specified using @(z), where z is the mid-point between a given
observation in one data set and a given observation in the other data
set. Default BandValue is Inf.

2-666

samplealign

This constraint reduces the time and memory complexity of the
algorithm from O(MN) to O(sqrt(MN)*K), where M and N are the number
of observations in X and Y respectively, and K is a small constant such
that K<<M and K<<N. Adjust BandValue to the maximum expected shift
between the reference dimensions in the two data sets, that is, between
X(:,1) and Y(:,1).

[I, J] = samplealign(X, Y, ...'Width', WidthValue, ...)
limits the number of potential matches between observations in two
data sets; that is, each observation in X is scored to the closest U
observations in Y, and each observation in Y is scored to the closest V
observations in X. Then, only these potential matches are passed to
the algorithm for further scoring. WidthValue is either a two-element
vector, [U, V] or a scalar that is used for both U and V. Closeness is
measured using only the first column (reference dimension) in each
data set. Default is Inf if 'Band' is specified; otherwise default is 10.

This constraint reduces the time and memory complexity of the
algorithm from O(MN) to O(sqrt(MN)*sqrt(UV)), where M and N are the
number of observations in X and Y respectively, and U and V are small
such that U<<M and V<<N.

Note If you specify both 'Band' and 'Width', only pairs of observations
that meet both constraints are considered potential matches and passed
to the algorithm for scoring.

Tip Specify 'Width' when you do not have a good estimate for the
'Band' property. To get an indication of the memory required to run
the algorithm with specific 'Band' and 'Width' parameters on your
data sets, run samplealign, but do not specify return values and set
'ShowConstraints' to true.

[I, J] = samplealign(X, Y, ...'Gap', GapValue, ...) specifies
the position-dependent terms for assigning gap penalties.

2-667

samplealign

GapValue is any of the following:

• Cell array, {G, H}, where G is either a scalar or a function handle
specified using @(X), and H is either a scalar or a function handle
specified using @(Y). The functions @(X) and @(Y) must calculate the
penalty for each observation (row) when it is matched to a gap in the
other data set. The functions @(X) and @(Y) must return a column
vector with the same number of rows as X or Y, containing the gap
penalty for each observation (row).

• Single function handle specified using @(Z), that is used for both
G and H. The function @(Z) must calculate the penalty for each
observation (row) in both X and Y when it is matched to a gap in
the other data set. The function @(Z) must take as arguments X
and Y. The function @(Z) must return a column vector with the
same number of rows as X or Y, containing the gap penalty for each
observation (row).

• Scalar that is used for both G and H.

The calculated value, GPX, is the gap penalty for matching observations
from the first data set X to gaps inserted in the second data set Y, and is
the product of two terms: GPX = G * QMS. The term G takes its value as a
function of the observations in X. Similarly, GPY is the gap penalty for
matching observations from Y to gaps inserted in X, and is the product
of two terms: GPY = H * QMS. The term H takes its value as a function of
the observations in Y. By default, the term QMS is the 0.75 quantile of
the score for the pairs of observations that are potential matches (that
is, pairs that comply with the 'Band' and 'Width' constraints).

If G and H are positive scalars, then GPX and GPY are independent of the
observation where the gap is being inserted.

Default GapValue is 1, that is, both G and H are 1, which indicates that
the default penalty for gap insertions in both sequences is equivalent
to the quantile (set by the 'Quantile' property, default = 0.75) of the
score for the pairs of observations that are potential matches.

2-668

samplealign

Note GapValue defaults to a relatively safe value. However, the success
of the algorithm depends on the fine tuning of the gap penalties, which
is application dependent. When the gap penalties are large relative to
the score of the correct matches, samplealign returns alignments with
fewer gaps, but with more incorrectly aligned regions. When the gap
penalties are smaller, the output alignment contains longer regions
with gaps and fewer matched observations. Set 'ShowNetwork' to true
to compare the gap penalties to the score of matched observations in
different regions of the alignment.

[I, J] = samplealign(X, Y, ...'Quantile', QuantileValue,
...) specifies the quantile value used to calculate the term QMS, which
is used by the 'Gap' property to calculate gap penalties. QuantileValue
is a scalar between 0 and 1. Default is 0.75.

Tip Set QuantileValue to an empty array ([]) to make the gap
penalities independent of QMS, that is, GPX and GPY are functions of only
the G and H input parameters respectively.

[I, J] = samplealign(X, Y, ...'Distance', DistanceValue,
...) specifies a function to calculate the distance between pairs of
observations that are potential matches. DistanceValue is a function
handle specified using @(R,S). The function @(R,S) must take as
arguments, R and S, matrices that have the same number of rows and
columns, and whose paired rows represent all potential matches of
observations in X and Y respectively. The function @(R,S) must return a
column vector of positive values with the same number of elements as
rows in R and S. Default is the Euclidean distance between the pairs.

2-669

samplealign

Caution

All columns in X and Y, including the reference dimension, are
considered when calculating distances. If you do not want to include
the reference dimension in the distance calculations, use the 'Weight'
property to exclude it.

[I, J] = samplealign(X, Y, ...'Weights', WeightsValue, ...)
controls the inclusion/exclusion of columns (features) or the emphasis
of columns (features) when calculating the distance score between
observations that are potential matches, that is when using the
'Distance' property. WeightsValue can be a logical row vector that
specifies columns in X and Y. WeightsValue can also be a numeric row
vector with the same number of elements as columns in X and Y, that
specifies the relative weights of the columns (features). Default is a
logical row vector with all elements set to true.

Tip Using a numeric row vector for WeightsValue and setting some
values to 0 can simplify the distance calculation when the data sets
have many columns (features).

Note The weight values are not considered when computing the
constrained alignment space, that is when using the 'Band' or 'Width'
properties, or when calculating the gap penalties, that is when using
the 'Gap' property.

[I, J] = samplealign(X, Y, ...'ShowConstraints',
ShowConstraintsValue, ...) controls the display of the search space
constrained by the input parameters 'Band' and 'Width', giving an
indication of the memory required to run the algorithm with specific

2-670

samplealign

'Band' and 'Width' on your data sets. Choices are true or false
(default).

[I, J] = samplealign(X, Y, ...'ShowNetwork',
ShowNetworkValue, ...) controls the display of the
dynamic programming network, the match scores, the gap penalties,
and the winning path. Choices are true or false (default).

[I, J] = samplealign(X, Y, ...'ShowAlignment',
ShowAlignmentValue, ...) controls the display of the first and second
columns of the X and Y data sets in the abscissa and the ordinate
respectively, of a two-dimensional plot. Links between all the potential
matches that meet the constraints are displayed, and the matches
belonging to the output alignment are highlighted. Choices are true,
false (default), or an integer specifying a column of the X and Y data
sets to plot as the ordinate.

Examples Warping a sine wave with a smooth function to more closely
follow cyclical sunspot activity

1 Load sunspot.dat, a data file included with MATLAB, that contains
the variable sunspot, which is a two-column matrix containing
variations in sunspot activity over the last 300 years. The first
column is the reference dimension (years), and the second column
contains sunspot activity values. Sunspot activity is cyclical, reaching
a maximum about every 11 years.

load sunspot.dat

2 Create a sine wave with a known period of sunspot activity.

years = (1700:1990)';
T = 11.038;
f = @(y) 60 + 60 * sin(y*(2*pi/T));

3 Align the observations between the sine wave and the sunspot
activity by introducing gaps.

2-671

samplealign

[i,j] = samplealign([years f(years)],sunspot,'weights',...
[0 1],'showalignment',true);

4 Estimate a smooth function to warp the sine wave.

[p,s,mu] = polyfit(years(i),years(j),15);
wy = @(y) polyval(p,(y-mu(1))./mu(2));

5 Plot the sunspot cycles, unwarped sine wave, and warped sine wave.

years = (1700:1/12:1990)';

2-672

samplealign

figure
plot(sunspot(:,1),sunspot(:,2),years,f(years),wy(years),...

f(years))
legend('Sunspots','Unwarped Sine Wave','Warped Sine Wave')
title('Smooth Warping Example')

Recovering a nonlinear warping between two signals
containing noisy Gaussian peaks

1 Create two signals with noisy Gaussian peaks.

2-673

samplealign

rand('twister',5489)
peakLoc = [30 60 90 130 150 200 230 300 380 430];
peakInt = [7 1 3 10 3 6 1 8 3 10];
time = 1:450;
comp = exp(-(bsxfun(@minus,time,peakLoc')./5).^2);
sig_1 = (peakInt + rand(1,10)) * comp + rand(1,450);
sig_2 = (peakInt + rand(1,10)) * comp + rand(1,450);

2 Define a nonlinear warping function.

wf = @(t) 1 + (t<=100).*0.01.*(t.^2) + (t>100).*...
(310+150*tanh(t./100-3));

3 Warp the second signal to distort it.

sig_2 = interp1(time,sig_2,wf(time),'pchip');

4 Align the observations between the two signals by introducing gaps.

[i,j] = samplealign([time;sig_1]',[time;sig_2]',...
'weights',[0,1],'band',35,'quantile',.5);

5 Plot the reference signal, distorted signal, and warped (corrected)
signal.

figure
sig_3 = interp1(time,sig_2,interp1(i,j,time,'pchip'),'pchip');
plot(time,sig_1,time,sig_2,time,sig_3)
legend('Reference','Distorted Signal','Corrected Signal')
title('Non-linear Warping Example')

2-674

samplealign

6 Plot the real and the estimated warping functions.

figure
plot(time,wf(time),time,interp1(j,i,time,'pchip'))
legend('Distorting Function','Estimated Warping')

2-675

samplealign

Note For examples of using function handles for the Band, Gap, and
Distance properties, see the demo Visualizing and Preprocessing
Hyphenated Mass-Spectrometry Data Sets for Metabolite and
Protein/Peptide Profiling.

References [1] Myers, C.S. and Rabiner, L.R. (1981). A comparative study of several
dynamic time-warping algorithms for connected word recognition. The
Bell System Technical Journal 60:7, 1389–1409.

2-676

samplealign

[2] Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm
optimization for spoken word recognition. IEEE Trans. Acoustics,
Speech and Signal Processing ASSP-26(1), 43–49.

See Also Bioinformatics Toolbox functions: msalign, msheatmap, mspalign,
msppresample, msresample

2-677

scfread

Purpose Read trace data from SCF file

Syntax Sample = scfread('File')
[Sample, Probability] = scfread('File')
[Sample, Probability, Comments] = scfread('File')
[A, C, T, G] = scfread ('File')
[A, C, T, G, ProbA, ProbC, ProbG, ProbT] = scfread ('File')
[A, C, T, G, ProbA, ProbC, ProbG, ProbT, Comments, PkIndex,

Base] = scfread ('File')

Arguments File SCF formatted file. Enter a file name or a path and file
name.

Description scfread reads data from an SCF formatted file into MATLAB
structures.

Sample = scfread('File') reads an SCF formatted file and returns
the sample data in the structure Sample, which contains the following
fields:

Field Description

A Column vector containing intensity of A fluorescence
tag

C Column vector containing intensity of C fluorescence
tag

G Column vector containing intensity of G fluorescence
tag

T Column vector containing intensity of T fluorescence
tag

[Sample, Probability] = scfread('File') also returns the
probability data in the structure Probability, which contains the
following fields:

2-678

scfread

Field Description

peak_index Column vector containing the position in the SCF file
for the start of the data for each peak

prob_A Column vector containing the probability of each base
in the sequence being an A

prob_C Column vector containing the probability of each base
in the sequence being a C

prob_G Column vector containing the probability of each base
in the sequence being a G

prob_T Column vector containing the probability of each base
in the sequence being a T

base Column vector containing the called bases for the
sequence

[Sample, Probability, Comments] = scfread('File') also returns
the comment information from the SCF file in a character array
Comments.

[A, C, T, G] = scfread ('File') returns the sample data for the
four bases in separate variables.

[A, C, T, G, ProbA, ProbC, ProbG, ProbT] = scfread ('File')
also returns the probabilities data for the four bases in separate
variables.

[A, C, T, G, ProbA, ProbC, ProbG, ProbT, Comments,
PkIndex, Base] = scfread ('File') also returns the peak indices
and called bases in separate variables.

SCF files store data from DNA sequencing instruments. Each
file includes sample data, sequence information, and the relative
probabilities of each of the four bases. For more information on SCF
files, see

http://www.mrc-lmb.cam.ac.uk/pubseq/manual/formats_unix_2.html

2-679

http://www.mrc-lmb.cam.ac.uk/pubseq/manual/formats_unix_2.html

scfread

Examples [sampleStruct, probStruct, Comments] = scfread('sample.scf')
sampleStruct =

A: [10827x1 double]
C: [10827x1 double]
G: [10827x1 double]
T: [10827x1 double]

probStruct =

peak_index: [742x1 double]
prob_A: [742x1 double]
prob_C: [742x1 double]
prob_G: [742x1 double]
prob_T: [742x1 double]

base: [742x1 char]

Comments =

SIGN=A=121,C=103,G=119,T=82
SPAC= 16.25
PRIM=0
MACH=Arkansas_SN312
DYEP=DT3700POP5{BD}v2.mob
NAME=HCIUP1D61207
LANE=6
GELN=
PROC=
RTRK=
CONV=phred version=0.990722.h
COMM=
SRCE=ABI 373A or 377

See Also Bioinformatics Toolbox functions: genbankread, traceplot

2-680

seq2regexp

Purpose Convert sequence with ambiguous characters to regular expression

Syntax seq2regexp(Seq)
seq2regexp(..., 'PropertyName', PropertyValue,...)
seq2regexp(..., 'Alphabet', AlphabetValue)
seq2regexp(..., 'Ambiguous', AmbiguousValue)

Arguments Seq Amino acid or nucleotide sequence as a string of
characters. You can also enter a structure with
the field Sequence.

AlphabetValue Property to select the sequence alphabet. Enter
either 'AA' for amino acids or 'NT' for nucleotides.
The default value is 'NT'.

AmbiguousValue Property to control returning ambiguous
characters in the regular expression. Enter either
true (include ambiguous characters) or false
(return only unambiguous characters). The default
value is true.

Nucleotide Conversions

Nucleotide
Letter Nucleotide Nucleotide Letter Nucleotide

A—A Adenosine S—[GC] (Strong)

C—C Cytosine W—[AT] (Weak)

G—G Guanine B—[GTC]

T—T Thymidine D—[GAT]

U—U Uridine H—[ACT]

R—[GA] (Purine) V—[GCA]

Y—[TC] (Pyrimidine) N—[AGCT] Any nucleotide

2-681

seq2regexp

Nucleotide
Letter Nucleotide Nucleotide Letter Nucleotide

K—[GT] (Keto) - — - Gap of
indeterminate
length

M—[AC] (Amino) ?—? Unknown

Amino Acid Conversion

Amino Acid Letter Description

B—[DN] Aspartic acid or asparagine

Z—[EQ] Glutamic acid or glutamine

X—[ARNDCQEGHILKMFPSTWYV] Any amino acid

Description seq2regexp(Seq) converts ambiguous nucleotide or amino acid symbols
in a sequence into a regular expression format using IUB/IUPAC codes.

seq2regexp(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

seq2regexp(..., 'Alphabet', AlphabetValue) selects the sequence
alphabet for nucleotide sequences or amino acid sequences.

seq2regexp(..., 'Ambiguous', AmbiguousValue), when
AmbiguousValue is false, removes the ambiguous characters from the
output regular expressions. For example:

• If Seq = 'ACGTK', and AmbiguousValue is true (default), MATLAB
returns ACGT[GTK] with the unambiguous characters G and T, and
the ambiguous character K.

• If Seq = 'ACGTK', and AmbiguousValue is false, MATLAB returns
ACGT[GT] with only the unambiguous characters.

2-682

seq2regexp

Example 1 Convert a nucleotide sequence into a regular expression.

seq2regexp('ACWTMAN')

ans =
AC[ATW]T[ACM]A[ACGTRYKMSWBDHVN]

2 Remove ambiguous characters from the regular expression.

seq2regexp('ACWTMAN', 'ambiguous', false)

ans =
AC[AT]T[AC]A[ACGT]

See Also Bioinformatics Toolbox functions: restrict, seqwordcount

MATLAB functions: regexp, regexpi

2-683

seqcomplement

Purpose Calculate complementary strand of nucleotide sequence

Syntax SeqC = seqcomplement(SeqNT)

Arguments
SeqNT Enter either a character string with the characters A,

T (U), G, C, and ambiguous characters R, Y, K, M, S, W,
B, D, H, V, N, or a vector of integers. You can also enter
a structure with the field Sequence.

Description SeqC = seqcomplement(SeqNT) calculates the complementary strand
(A-->T, C-->G, G-->C, T-->A) of a DNA sequence and returns a sequence in
the same format as SeqNT. For example, if SeqNT is an integer sequence
then so is SeqC.

Example Return the complement of a DNA nucleotide sequence.

s = 'ATCG';
seqcomplement(s)

ans =
TAGC

See Also Bioinformatics Toolbox functions seqrcomplement, seqreverse,
seqtool

2-684

seqconsensus

Purpose Calculate consensus sequence

Syntax CSeq = seqconsensus(Seqs)
[CSeq, Score] = seqconsensus(Seqs)
CSeq = seqconsensus(Profile)
seqconsensus(..., 'PropertyName', PropertyValue,...)
seqconsensus(..., 'ScoringMatrix', ScoringMatrixValue)

Arguments
Seqs Set of multiply aligned amino acid or

nucleotide sequences. Enter an array of
strings, a cell array of strings, or an array of
structures with the field Sequence.

Profile Sequence profile. Enter a profile from the
function seqprofile. Profile is a matrix of
size [20 (or 4) x Sequence Length] with
the frequency or count of amino acids (or
nucleotides) for every position. Profile can
also have 21 (or 5) rows if gaps are included
in the consensus.

ScoringMatrixValue Scoring matrix. The default value is
BLOSUM50 for amino acid sequences or NUC44
for nucleotide sequences. ScoringMatrix
can also be a 21x21, 5x5, 20x20, or 4x4
numeric array. For the gap-included cases,
gap scores (last row/column) are set to
mean(diag(ScoringMatrix))for a gap
matching with another gap, and set to
mean(nodiag(ScoringMatrix)) for a gap
matching with another symbol

Description CSeq = seqconsensus(Seqs), for a multiply aligned set of sequences
(Seqs), returns a string with the consensus sequence (CSeq). The
frequency of symbols (20 amino acids, 4 nucleotides) in the set of
sequences is determined with the function seqprofile. For ambiguous

2-685

seqconsensus

nucleotide or amino acid symbols, the frequency or count is added to
the standard set of symbols.

[CSeq, Score] = seqconsensus(Seqs) returns the conservation
score of the consensus sequence. Scores are computed with the scoring
matrix BLOSUM50 for amino acids or NUC44 for nucleotides. Scores are
the average euclidean distance between the scored symbol and the
M-dimensional consensus value. M is the size of the alphabet. The
consensus value is the profile weighted by the scoring matrix.

CSeq = seqconsensus(Profile) returns a string with the consensus
sequence (CSeq) from a sequence profile (Profile).

seqconsensus(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

seqconsensus(..., 'ScoringMatrix', ScoringMatrixValue)
specifies the scoring matrix.

The following input parameters are analogous to the function
seqprofile when the alphabet is restricted to 'AA' or 'NT'.

seqconsensus(..., 'Alphabet', AlphabetValue)

seqconsensus(..., 'Gaps', GapsValue)

seqconsensus(..., 'Ambiguous', AmbiguousValue)

seqconsensus(..., 'Limits', LimitsValue)

Examples seqs = fastaread('pf00002.fa');
[C,S] = seqconsensus(seqs,'limits',[50 60],'gaps','all')

See Also Bioinformatics Toolbox functions fastaread, multialignread,
profalign, seqdisp, seqprofile

2-686

seqdisp

Purpose Format long sequence output for easy viewing

Syntax seqdisp(Seq)
seqdisp(..., 'PropertyName', PropertyValue,...)
seqdisp(..., 'Row', RowValue)
seqdisp(..., 'Column', ColumnValue)
seqdisp(..., 'ShowNumbers', ShowNumbersValue)

Arguments
Seq Nucleotide or amino acid sequence. Enter a character

array, a FASTA file name, or a MATLAB structure
with the field Sequence. Multiply aligned sequences
are allowed.

FASTA files can have the file extension fa, fasta,
fas, fsa, or fst.

Row Property to select the length of each row. Enter an
integer. The default length is 60.

Column Property to select the column width or number of
symbols before displaying a space. Enter an integer.
The default column width is 10.

ShowNumbers Property to control displaying numbers at the start of
each row. Enter either true (default) to show numbers
or false to hide numbers.

Description seqdisp(Seq) displays a sequence (Seq) in rows with a default row
length of 60 and a default column width of 10.

seqdisp(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

seqdisp(..., 'Row', RowValue) specifies the length of each row for
the displayed sequence.

2-687

seqdisp

seqdisp(..., 'Column', ColumnValue) specifies the number of
letters to display before adding a space. Row must be larger than and
evenly divisible by Column.

seqdisp(..., 'ShowNumbers', ShowNumbersValue) when
ShowNumbers is false, turns off the position numbers at the start of
each row off.

Examples Read sequence information from the GenBank database. Display the
sequence in rows with 50 letters, and within a row, separate every 10
letters with a space.

mouseHEXA = getgenbank('AK080777');
seqdisp(mouseHEXA, 'Row', 50, 'Column', 10)

Create and save a FASTA file with two sequences, and then display it.

hdr = ['Sequence A'; 'Sequence B'];
seq = ['TAGCTGRCCAAGGCCAAGCGAGCTTN';'ATCGACYGGTTCCGGTTCGCTCGAAN']
fastawrite('local.fa', hdr, seq);
seqdisp('local.fa', 'ShowNumbers', false')

ans =
>Sequence A
1 TAGCTGRCCA AGGCCAAGCG AGCTTN

>Sequence B
1 ATCGACYGGT TCCGGTTCGC TCGAAN

See Also Bioinformatics Toolbox functions: multialignread, seqconsensus,
seqlogo, seqprofile, seqshoworfs, seqshowwords, seqtool,
getgenbank

2-688

seqdotplot

Purpose Create dot plot of two sequences

Syntax seqdotplot (Seq1, Seq2)
seqdotplot(Seq1,Seq2, Window, Number)
Matches = seqdotplot(...)
[Matches, Matrix] = seqdotplot(...)

Arguments
Seq1, Seq2 Nucleotide or amino acid sequences.

Enter two character strings. Do not enter
a vector of integers. You can also enter a
structure with the field Sequence.

Window Enter an integer for the size of a window.

Number Enter an integer for the number of
characters within the window that
match.

Description seqdotplot (Seq1, Seq2) plots a figure that visualizes the match
between two sequences.

seqdotplot(Seq1,Seq2, Window, Number) plots sequence matches
when there are at least Number matches in a window of size Window.

When plotting nucleotide sequences, start with a Window of 11 and
Number of 7.

Matches = seqdotplot(...) returns the number of dots in the dot
plot matrix.

[Matches, Matrix] = seqdotplot(...) returns the dotplot as a
sparse matrix.

Examples This example shows the similarities between the prion protein (PrP)
nucleotide sequences of two ruminants, the moufflon and the golden
takin.

moufflon = getgenbank('AB060288','Sequence',true);

2-689

seqdotplot

takin = getgenbank('AB060290','Sequence',true);
seqdotplot(moufflon,takin,11,7)

Matches = seqdotplot(moufflon,takin,11,7)
Matches =

5552

[Matches, Matrix] = seqdotplot(moufflon,takin,11,7)

See Also Bioinformatics Toolbox functions nwalign, swalign

2-690

seqinsertgaps

Purpose Insert gaps into nucleotide or amino acid sequence

Syntax NewSeq = seqinsertgaps(Seq, Positions)
NewSeq = seqinsertgaps(Seq, GappedSeq)
NewSeq = seqinsertgaps(Seq, GappedSeq, Relationship)

Arguments Seq Either of the following:
• String specifying a nucleotide or amino acid

sequence

• MATLAB structure containing a Sequence field

Positions Vector of integers to specify the positions in Seq
before which to insert a gap.

GappedSeq Either of the following:
• String specifying a nucleotide or amino acid

sequence

• MATLAB structure containing a Sequence field

Relationship Integer specifying the relationship between Seq and
GappedSeq. Choices are:

• 1 — Both sequences use the same alphabet, that is
both are nucleotide sequences or both are amino
acid sequences.

• 3 — Seq contains nucleotides representing codons
and GappedSeq contains amino acids (default).

Return
Values

NewSeq Sequence with gaps inserted, represented by a string
specifying a nucleotide or amino acid sequence.

2-691

seqinsertgaps

Description NewSeq = seqinsertgaps(Seq, Positions) inserts gaps in the
sequence Seq before the positions specified by the integers in the vector
Positions.

NewSeq = seqinsertgaps(Seq, GappedSeq) finds the gap positions
in the sequence GappedSeq, then inserts gaps in the corresponding
positions in the sequence Seq.

NewSeq = seqinsertgaps(Seq, GappedSeq, Relationship) specifies
the relationship between Seq and GappedSeq. Enter 1 for Relationship
when both sequences use the same alphabet, that is both are nucleotide
sequences or both are amino acid sequences. Enter 3 for Relationship
when Seq contains nucleotides representing codons and GappedSeq
contains amino acids. Default is 3.

Examples 1 Retrieve two nucleotide sequences from the GenBank database for
the neuraminidase (NA) protein of two strains of the Influenza A
virus (H5N1).

hk01 = getgenbank('AF509094');
vt04 = getgenbank('DQ094287');

2 Extract the coding region from the two nucleotide sequences.

hk01_cds = featuresparse(hk01,'feature','CDS','Sequence',true);
vt04_cds = featuresparse(vt04,'feature','CDS','Sequence',true);

3 Align the amino acids sequences converted from the nucleotide
sequences.

[sc,al]=nwalign(nt2aa(hk01_cds),nt2aa(vt04_cds),'extendgap',1);

4 Use the seqinsertgaps function to copy the gaps from the aligned
amino acid sequences to their corresponding nucleotide sequences,
thus codon-aligning them.

hk01_aligned = seqinsertgaps(hk01_cds,al(1,:))
vt04_aligned = seqinsertgaps(vt04_cds,al(3,:))

2-692

seqinsertgaps

5 Once you have code aligned the two sequences, you can use
them as input to other functions such as dnds, which calculates
the synonymous and nonsynonymous substitutions rates of the
codon-aligned nucleotide sequences. By setting Verbose to true, you
can also display the codons considered in the computations and their
amino acid translations.

[dn,ds] = dnds(hk01_aligned,vt04_aligned,'verbose',true)

See Also Bioinformatics Toolbox functions: dnds, dndsml, int2aa, int2nt

2-693

seqlinkage

Purpose Construct phylogenetic tree from pair-wise distances

Syntax Tree = seqlinkage(Dist)
Tree = seqlinkage(Dist, Method)
Tree = seqlinkage(Dist, Method, Names)

Arguments
Dist Matrix or vector of pair-wise distances, such as

returned by the seqpdist function.

Method String that specifies a distance method. Choices are:

• 'single'

• 'complete'

• 'average' (default)

• 'weighted'

• 'centroid'

• 'median'

Names Property to use alternative labels for leaf nodes.
Enter a vector of structures, with the fields 'Header'
or 'Name', or a cell array of strings. In both cases the
number of elements you provide must comply with
the number of samples used to generate the pair-wise
distances in Dist.

Description Tree = seqlinkage(Dist) returns a phylogenetic tree object from
the pair-wise distances, Dist, between the species or products. Dist
is a matrix or vector of pair-wise distances, such as returned by the
seqpdist function.

Tree = seqlinkage(Dist, Method) creates a phylogenetic tree object
using a specified patristic distance method. The available methods are:

2-694

seqlinkage

'single' Nearest distance (single linkage method)

'complete' Furthest distance (complete linkage method)

'average' (default) Unweighted Pair Group Method Average
(UPGMA, group average).

'weighted' Weighted Pair Group Method Average
(WPGMA)

'centroid' Unweighted Pair Group Method Centroid
(UPGMC)

'median' Weighted Pair Group Method Centroid
(WPGMC)

Tree = seqlinkage(Dist, Method, Names) passes a list of names to
label the leaf nodes (for example, species or products) in a phylogenetic
tree object.

Examples % Load a multiple alignment of amino acids:
seqs = fastaread('pf00002.fa');
% Measure the 'Jukes-Cantor' pairwise distances:
dist = seqpdist(seqs,'method','jukes-cantor',...

'indels','pair');
% Build the phylogenetic tree with the single linkage
% method and pass the names of the sequences:
tree = seqlinkage(dist,'single',seqs)
view(tree)

See Also Bioinformatics Toolbox functions: phytree (object constructor),
phytreewrite, seqpdist, seqneighjoin

Bioinformatics Toolbox methods of phytree object: plot, view

2-695

seqlogo

Purpose Display sequence logo for nucleotide or amino acid sequences

Syntax seqlogo(Seqs)
seqlogo(Profile)
DisplayInfo = seqlogo(Seqs)
seqlogo(..., 'Displaylogo', DisplaylogoValue, ...)
seqlogo(..., 'Alphabet', AlphabetValue, ...)
seqlogo(..., 'Startat', StartatValue, ...)
seqlogo(..., 'Endat', EndatValue, ...)
seqlogo(..., 'SSCorrection', SSCorrectionValue, ...)

Arguments Seqs Set of pair-wise or multiply aligned nucleotide
or amino acid sequences, represented by any
of the following:
• Character array

• Cell array of strings

• Array of structures containing a Sequence
field

Profile Sequence profile distribution matrix with the
frequency of nucleotides or amino acids for
every column in the multiple alignment, such
as returned by the seqprofile function.

The size of the frequency distribution matrix
is:

• For nucleotides — [4 x sequence length]

• For amino acids — [20 x sequence
length]

If gaps were included, Profile may have 5
rows (for nucleotides) or 21 rows (for amino
acids), but seqlogo ignores gaps.

2-696

seqlogo

DisplaylogoValue Controls the display of a sequence logo.
Choices are true (default) or false.

AlphabetValue String specifying the type of sequence
(nucleotide or amino acid). Choices are 'NT'
(default) or'AA'.

StartatValue Positive integer that specifies the starting
position for the sequences in Seqs. Default
starting position is 1.

EndatValue Positive integer that specifies the ending
position for the sequences in Seqs. Default
ending position is the maximum length of the
sequences in Seqs.

SSCorrectionValue Controls the use of small sample correction in
the estimation of the number of bits. Choices
are true (default) or false.

Return
Values

DisplayInfo Cell array containing the symbol list in Seqs
and the weight matrix used to graphically
display the sequence logo.

Description seqlogo(Seqs) displays a sequence logo for Seqs, a set of aligned
sequences. The logo graphically displays the sequence conservation
at a particular position in the alignment of sequences, measured in
bits. The maximum sequence conservation per site is log2(4) bits for
nucleotide sequences and log2(20) bits for amino acid sequences. If
the sequence conservation value is zero or negative, no logo is displayed
in that position.

seqlogo(Profile) displays a sequence logo for Profile, a sequence
profile distribution matrix with the frequency of nucleotides or amino
acids for every column in the multiple alignment, such as returned by
the seqprofile function.

2-697

seqlogo

Color Code for Nucleotides

Nucleotide Color

A Green

C Blue

G Yellow

T, U Red

Other Purple

Color Code for Amino Acids

Amino Acid Chemical
Property

Color

G S T Y C Q N Polar Green

A V L I P W F M Hydrophobic Orange

D E Acidic Red

K R H Basic Blue

Other — Tan

DisplayInfo = seqlogo(Seqs)returns a cell array of unique symbols
in a sequence (Seqs) and the information weight matrix used to
graphically display the logo.

seqlogo(Seqs, ...'PropertyName', PropertyValue, ...) calls
seqpdist with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case
insensitive. These property name/property value pairs are as follows:

seqlogo(..., 'Displaylogo', DisplaylogoValue, ...) controls
the display of a sequence logo. Choices are true (default) or false.

2-698

seqlogo

seqlogo(..., 'Alphabet', AlphabetValue, ...) specifies the type
of sequence (nucleotide or amino acid). Choices are 'NT' (default)
or'AA'.

Note If you provide amino acid sequences to seqlogo, you must set
Alphabet to 'AA'.

seqlogo(..., 'Startat', StartatValue, ...) specifies the starting
position for the sequences in Seqs. Default starting position is 1.

seqlogo(..., 'Endat', EndatValue, ...) specifies the ending
position for the sequences in Seqs. Default ending position is the
maximum length of the sequences in Seqs.

seqlogo(..., 'SSCorrection', SSCorrectionValue, ...) controls
the use of small sample correction in the estimation of the number of
bits. Choices are true (default) or false.

Note A simple calculation of bits tends to overestimate the
conservation at a particular location. To compensate for this
overestimation, when SSCorrection is set to true, a rough estimate
is applied as an approximate correction. This correction works better
when the number of sequences is greater than 50.

Examples Displaying a Sequence Logo for a Nucleotide Sequence

1 Create a series of aligned nucleotide sequences.

S = {'ATTATAGCAAACTA',...
'AACATGCCAAAGTA',...
'ATCATGCAAAAGGA'}

2 Display the sequence logo.

2-699

seqlogo

seqlogo(S)

3 Notice that correction for small samples prevents you from seeing
columns with information equal to log2(4) = 2 bits, but you can
turn this adjustment off.

seqlogo(S,'sscorrection',false)

Displaying a Sequence Logo for an Amino Acid Sequence

1 Create a series of aligned amino acid sequences.

S2 = {'LSGGQRQRVAIARALAL',...
'LSGGEKQRVAIARALMN',...

2-700

seqlogo

'LSGGQIQRVLLARALAA',...
'LSGGERRRLEIACVLAL',...
'FSGGEKKKNELWQMLAL',...
'LSGGERRRLEIACVLAL'};

2 Display the sequence logo, specifying an amino acid sequence and
limiting the logo to sequence positions 2 through 10.

seqlogo(S2, 'alphabet', 'aa', 'startAt', 2, 'endAt', 10)

References [1] Schneider, T.D., and Stephens, R.M. (1990). Sequence Logos: A
new way to display consensus sequences. Nucleic Acids Research 18,
6097–6100.

2-701

seqlogo

See Also Bioinformatics Toolbox functions: seqconsensus, seqdisp, seqprofile

2-702

seqmatch

Purpose Find matches for every string in library

Syntax Index = seqmatch(Strings, Library)

Description Index = seqmatch(Strings, Library) looks through the elements of
Library to find strings that begin with every string in Strings. Index
contains the index to the first occurrence for every string in the query.
Strings and Library must be cell arrays of strings.

Examples lib = {'VIPS_HUMAN', 'SCCR_RABIT', 'CALR_PIG' ,'VIPR_RAT', 'PACR_MOUSE'};

query = {'CALR','VIP'};

h = seqmatch(query,lib);

lib(h)

See Also MATLAB functions: regexp, strmatch

2-703

seqneighjoin

Purpose Neighbor-joining method for phylogenetic tree reconstruction

Syntax Tree = seqneighjoin(Dist)
Tree = seqneighjoin(Dist, Method)
Tree = seqneighjoin(Dist, Method, Names)
seqneighjoin(..., 'PropertyName', PropertyValue,...)
seqneighjoin(..., 'Reroot', RerootValue)

Arguments
Dist Matrix or vector returned by the seqpdist function

Method Method to compute the distances between nodes. Enter
'equivar' (default), 'firstorder', or 'average'.

Names Vector of structures with the fields 'Header', 'Name',
or a cell array of strings. In all cases the number of
elements must equal the number of samples used to
generate the pairwise distances in Dist.

Description Tree = seqneighjoin(Dist) computes a phylogenetic tree object from
pairwise distances (Dist) between the species or products using the
neighbor-joining method.

Tree = seqneighjoin(Dist, Method) selects a method (Method) to
compute the distances of the new nodes to all other nodes at every
iteration. The general expression to calculate the distances between the
new node (n), after joining i and j and all other nodes (k), is given by

D(n,k) = a*D(i,k) + (1-a)*D(j,k) - a*D(n,i) - (1-a)*D(n,j)

This expression is guaranteed to find the correct tree with additive
data (minimum variance reduction).

The following table describes the values for Method.

2-704

seqneighjoin

'equivar'
(default)

Assumes equal variance and independence of
evolutionary distance estimates (a = 1/2). Such as
in Studier and Keppler, JMBE (1988).

'firstorder' Assumes a first-order model of the variances and
covariances of evolutionary distance estimates, 'a'
is adjusted at every iteration to a value between 0
and 1. Such as in Gascuel, JMBE (1997).

'average' New distances are the weighted average of previous
distances while the branch distances are ignored.

D(n,k) = [D(i,k) + D(j,k)] /2

As in the original neighbor-joining algorithm by
Saitou and Nei, JMBE (1987).

Tree = seqneighjoin(Dist, Method, Names) passes a list of
names (Names) to label the leaf nodes (e.g., species or products) in the
phylogenetic tree object.

seqneighjoin(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

seqneighjoin(..., 'Reroot', RerootValue), when RerootValue is
false, excludes rerooting the resulting tree. This is useful for observing
the original linkage order followed by the algorithm. By default
seqneighjoin reroots the resulting tree using the midpoint method.

Examples 1 Load a multiple alignment of amino acids.

seqs = fastaread('pf00002.fa');

2 Measure the Jukes-Cantor pair-wise distances.

dist = seqpdist(seqs,'method','jukes-cantor','indels','pair');

3 Build the phylogenetic using the neighbor-joining algorithm.

2-705

seqneighjoin

tree = seqneighjoin(dist,'equivar',seqs)
view(tree)

References [1] Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new
method for reconstructing phylogenetic trees. Molecular Biology and
Evolution 4(4), 406–425.

[2] Gascuel, O. (1997). BIONJ: An improved version of the NJ algorithm
based on a simple model of sequence data. Molecular Biology and
Evolution 14 685–695.

[3] Studier, J.A., Keppler, K.J. (1988). A note on the neighbor-joining
algorithm of Saitou and Nei. Molecular Biology and Evolution 5(6)
729–731.

See Also Bioinformatics Toolbox functions: multialign, phytree (object
constructor), seqlinkage (alternative method to create a phylogenetic
tree), seqpdist

Methods of phytree object: reroot, view

2-706

seqpdist

Purpose Calculate pair-wise distance between sequences

Syntax D = seqpdist(Seqs)
D = seqpdist(Seqs, ...'Method', MethodValue, ...)
D = seqpdist(Seqs, ...'Indels', IndelsValue, ...)
D = seqpdist(Seqs, ...'Optargs', OptargsValue, ...)
D = seqpdist(Seqs, ...'PairwiseAlignment',

PairwiseAlignmentValue, ...)
D = seqpdist(Seqs, ...'JobManager', JobManagerValue, ...)
D = seqpdist(Seqs, ...'WaitInQueue', WaitInQueueValue, ...)
D = seqpdist(Seqs, ...'SquareForm', SquareFormValue, ...)
D = seqpdist(Seqs, ...'Alphabet', AlphabetValue, ...)
D = seqpdist(Seqs, ...'ScoringMatrix', ScoringMatrixValue,

...)
D = seqpdist(Seqs, ...'Scale', ScaleValue, ...)
D = seqpdist(Seqs, ...'GapOpen', GapOpenValue, ...)
D = seqpdist(Seqs, ...'ExtendGap', ExtendGapValue, ...)

Arguments Seqs Any of the following:
• Cell array containing nucleotide or

amino acid sequences

• Vector of structures containing a
Sequence field

• Matrix of characters, in which each row
corresponds to a nucleotide or amino
acid sequence

MethodValue String that specifies the method for
calculating pair-wise distances. Default is
Jukes-Cantor.

IndelsValue String that specifies how to treat sites
with gaps. Default is score.

2-707

seqpdist

OptargsValue String or cell array specifying one or more
input arguments required or accepted
by the distance method specified by the
Method property.

PairwiseAlignmentValue Controls the global pair-wise alignment
of input sequences (using the nwalign
function), while ignoring the multiple
alignment of the input sequences (if any).
Choices are true or false. Default is:

• true — When all input sequences do
not have the same length.

• false — When all input sequences
have the same length.

Tip If your input sequences have the
same length, seqpdist will assume they
aligned. If they are not aligned, do one of
the following:

• Align the sequences before passing
them to seqpdist, for example, using
the multialign function.

• Set PairwiseAlignment to true when
using seqpdist.

2-708

seqpdist

JobManagerValue A jobmanager object, such as returned
by the Distributed Computing Toolbox
function findResource, that represents an
available distributed MATLAB resource.
Specifying this property distributes
pair-wise alignments into a cluster of
computers using Distributed Computing
Toolbox. You must have Distributed
Computing Toolbox to use this property.

WaitInQueueValue Controls whether seqpdist waits for
a distributed MATLAB resource to
be available when you have set the
JobManager property. Choices are true
or false (default). You must have
Distributed Computing Toolbox to use this
property.

SquareFormValue Controls the conversion of the output into
a square matrix. Choices are true or
false (default).

AlphabetValue String specifying the type of sequence
(nucleotide or amino acid). Choices are
'NT' or 'AA' (default).

2-709

seqpdist

ScoringMatrixValue String specifying the scoring matrix to
use for the global pair-wise alignment.
Choices for amino acid sequences are:

• 'PAM40'

• 'PAM250'

• 'DAYHOFF'

• 'GONNET'

• 'BLOSUM30' increasing by 5 up to
'BLOSUM90'

• 'BLOSUM62'

• 'BLOSUM100'

Default is:

• 'NUC44' (when AlphabetValue equals
'NT')

• 'BLOSUM50' (when AlphabetValue
equals 'AA')

ScaleValue Positive value that specifies the scale
factor used to return the score in arbitrary
units. If the scoring matrix information
also provides a scale factor, then both are
used.

GapOpenValue Positive integer specifying the penalty for
opening a gap in the alignment. Default
is 8.

ExtendedGapValue Positive integer specifying the penalty
for extending a gap. Default is equal to
GapOpenValue.

2-710

seqpdist

Return
Values

D Vector containing biological distances
between each pair of sequences stored in
the M elements of Seqs.

Description D = seqpdist(Seqs) returns D, a vector containing biological distances
between each pair of sequences stored in the M sequences of Seqs, a cell
array of sequences, a vector of structures, or a matrix or sequences.

D is a 1-by-(M*(M-1)/2) row vector corresponding to the M*(M-1)/2
pairs of sequences in Seqs. The output D is arranged in the order
((2,1),(3,1),..., (M,1),(3,2),...(M,2),.....(M,M-1)). This is
the lower-left triangle of the full M-by-M distance matrix. To get the
distance between the Ith and the Jth sequences for I > J, use the
formula D((J-1)*(M-J/2)+I-J).

D = seqpdist(Seqs, ...'PropertyName', PropertyValue, ...)
calls seqpdist with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case
insensitive. These property name/property value pairs are as follows:

D = seqpdist(Seqs, ...'Method', MethodValue, ...) specifies a
method to compute distances between every pair of sequences. Choices
are shown in the following tables.

Methods for Nucleotides and Amino Acids

Method Description

p-distance Proportion of sites at which the two sequences
are different. p is close to 1 for poorly related
sequences, and p is close to 0 for similar
sequences.

d = p

2-711

seqpdist

Method Description

Jukes-Cantor
(default)

Maximum likelihood estimate of the number
of substitutions between two sequences. p is
described with the method p-distance.For
nucleotides:

d = -3/4 log(1-p * 4/3)

For amino acids:

d = -19/20 log(1-p * 20/19)

alignment-score Distance (d) between two sequences (1, 2) is
computed from the pair-wise alignment score
between the two sequences (score12), and the
pair-wise alignment score between each sequence
and itself (score11, score22) as follows:

d = (1-score12/score11)* (1-score12/score22)

This option does not imply that prealigned input
sequences will be realigned, it only scores them.
Use with care; this distance method does not
comply with the ultrametric condition. In the
rare case where the score between sequences is
greater than the score when aligning a sequence
with itself, then d = 0.

2-712

seqpdist

Methods with No Scoring of Gaps (Nucleotides Only)

Method Description

Tajima-Nei Maximum likelihood estimate considering the
background nucleotide frequencies. It can be
computed from the input sequences or given by
setting Optargs to [gA gC gG gT]. gA, gC, gG, gT
are scalar values for the nucleotide frequencies.

Kimura Considers separately the transitional nucleotide
substitution and the transversional nucleotide
substitution.

Tamura Considers separately the transitional nucleotide
substitution, the transversional nucleotide
substitution, and the GC content. GC content can
be computed from the input sequences or given by
setting Optargs to the proportion of GC content
(scalar value form 0 to 1).

Hasegawa Considers separately the transitional nucleotide
substitution, the transversional nucleotide
substitution, and the background nucleotide
frequencies. Background frequencies can be
computed from the input sequences or given by
setting the Optargs property to [gA gC gG gT].

Nei-Tamura Considers separately the transitional nucleotide
substitution between purines, the transitional
nucleotide substitution between pyrimidines, the
transversional nucleotide substitution, and the
background nucleotide frequencies. Background
frequencies can be computed from the input
sequences or given by setting the Optargs
property to [gA gC gG gT].

2-713

seqpdist

Methods with No Scoring of Gaps (Amino Acids Only)

Method Description

Poisson Assumes that the number of amino acid
substitutions at each site has a Poisson
distribution.

Gamma Assumes that the number of amino acid
substitutions at each site has a Gamma
distribution with parameter a. You can set a by
using the Optargs property. Default is 2.

You can also specify a user-defined distance function using @, for
example, @distfun. The distance function must be of the form:

function D = distfun(S1, S2, OptArgsValue)

The distfun function takes the following arguments:

• S1 , S2 — Two sequences of the same length (nucleotide or amino
acid).

• OptArgsValue — Optional problem-dependent arguments.

The distfun function returns a scalar that represents the distance
between S1 and S2.

D = seqpdist(Seqs, ...'Indels', IndelsValue, ...) specifies
how to treat sites with gaps. Choices are:

• score (default) — Scores these sites either as a point mutation or
with the alignment parameters, depending on the method selected.

• pairwise-del — For every pair-wise comparison, it ignores the sites
with gaps.

2-714

seqpdist

• complete-del — Ignores all the columns in the multiple alignment
that contain a gap. This option is available only if a multiple
alignment was provided as the input Seqs.

D = seqpdist(Seqs, ...'Optargs', OptargsValue, ...) passes
one or more arguments required or accepted by the distance method
specified by the Method property. Use a string or cell array to pass
one or multiple input arguments. For example, you can provide the
nucleotide frequencies for the Tajima-Nei distance method, instead of
computing them from the input sequences.

D = seqpdist(Seqs, ...'PairwiseAlignment',
PairwiseAlignmentValue, ...) controls the global pair-wise
alignment of input sequences (using the nwalign function), while
ignoring the multiple alignment of the input sequences (if any). Default
is:

• true — When all input sequences do not have the same length.

• false — When all input sequences have the same length.

Tip If your input sequences have the same length, seqpdist will
assume they aligned. If they are not aligned, do one of the following:

• Align the sequences before passing them to seqpdist, for example,
using the multialign function.

• Set PairwiseAlignment to true when using seqpdist.

D = seqpdist(Seqs, ...'JobManager', JobManagerValue, ...)
distributes pair-wise alignments into a cluster of computers using
Distributed Computing Toolbox. JobManagerValue is a jobmanager
object such as returned by the Distributed Computing Toolbox function
findResource, that represents an available distributed MATLAB
resource. You must have Distributed Computing Toolbox to use this
property.

2-715

seqpdist

D = seqpdist(Seqs, ...'WaitInQueue', WaitInQueueValue, ...)
controls whether seqpdist waits for a distributed MATLAB resource
to be available when you have set the JobManager property. When
WaitInQueueValue is true, seqpdist waits in the job manager queue
for an available worker. When WaitInQueueValue is false (default)
and there are no workers immediately available, seqpdist stops and
displays an error message. You must have Distributed Computing
Toolbox and have also set the JobManager property to use this property.

D = seqpdist(Seqs, ...'SquareForm', SquareFormValue, ...),
controls the conversion of the output into a square matrix such that
D(I,J) denotes the distance between the Ith and Jth sequences. The
square matrix is symmetric and has a zero diagonal. Choices are true
or false (default). Setting Squareform to true is the same as using the
squareform function in Statistics Toolbox.

D = seqpdist(Seqs, ...'Alphabet', AlphabetValue, ...)
specifies the type of sequence (nucleotide or amino acid). Choices are
'NT' or 'AA' (default).

The remaining input properties are available when the Method property
equals 'alignment-score' or the PairwiseAlignment property equals
true.

D = seqpdist(Seqs, ...'ScoringMatrix',
ScoringMatrixValue, ...) specifies the scoring matrix
to use for the global pair-wise alignment. Default is:

• 'NUC44' (when AlphabetValue equals 'NT')

• 'BLOSUM50' (when AlphabetValue equals 'AA')

D = seqpdist(Seqs, ...'Scale', ScaleValue, ...) specifies the
scale factor used to return the score in arbitrary units. Choices are any
positive value. If the scoring matrix information also provides a scale
factor, then both are used.

D = seqpdist(Seqs, ...'GapOpen', GapOpenValue, ...) specifies
the penalty for opening a gap in the alignment. Choices are any positive
integer. Default is 8.

2-716

seqpdist

D = seqpdist(Seqs, ...'ExtendGap', ExtendGapValue, ...)
specifies the penalty for extending a gap in the alignment. Choices are
any positive integer. Default is equal to GapOpenValue.

Examples 1 Read amino acids alignment data into a MATLAB structure.

seqs = fastaread('pf00002.fa');

2 For every possible pair of sequences in the multiple alignment, ignore
sites with gaps and score with the scoring matrix PAM250.

dist = seqpdist(seqs,'Method','alignment-score',...
'Indels','pairwise-delete',...
'ScoringMatrix','pam250');

3 Force the realignment of every pair of sequences ignoring the
provided multiple alignment.

dist = seqpdist(seqs,'Method','alignment-score',...
'Indels','pairwise-delete',...
'ScoringMatrix','pam250',...
'PairwiseAlignment',true);

4 Measure the ’Jukes-Cantor’ pair-wise distances after realigning every
pair of sequences, counting the gaps as point mutations.

dist = seqpdist(seqs,'Method','jukes-cantor',...
'Indels','score',...
'Scoringmatrix','pam250',...
'PairwiseAlignment',true);

See Also Bioinformatics Toolbox functions: fastaread, dnds, dndsml,
multialign, nwalign, phytree (object constructor), seqlinkage

Bioinformatics Toolbox object: phytree object

Bioinformatics Toolbox method of a phytree object: pdist

2-717

seqprofile

Purpose Calculate sequence profile from set of multiply aligned sequences

Syntax Profile = seqprofile(Seqs, 'PropertyName',
PropertyValue ...)

[Profile, Symbols] = seqprofile(Seqs)
seqprofile(..., 'Alphabet', AlphabetValue)
seqprofile(..., 'Counts', CountsValue)
seqprofile(..., 'Gaps', GapsValue)
seqprofile(..., 'Ambiguous', AmbiguousValue),
seqprofile(..., 'Limits', LimitsValue)

Arguments
Seqs Set of multiply aligned sequences. Enter an

array of strings, cell array of strings, or an
array of structures with the field Sequence.

Alphabet Sequence alphabet. Enter 'NT' (nucleotides),
'AA' (amino acids), or 'none'. The default
alphabet is 'AA'.

When Alphabet is 'none', the symbol list
is based on the observed symbols. Every
character can be a symbol except for a hyphen
(-) and a period (.), which are reserved for gaps.

Count Property to control returning frequency (ratio
of counts/total counts) or counts. Enter either
true (counts) or false (frequency). The default
value is false.

Gaps Property to control counting gaps in a sequence.
Enter 'all' (counts all gaps), 'noflanks'
(counts all gaps except those at the flanks of
every sequence), or 'none'. The default value
is 'none'.

2-718

seqprofile

Ambiguous Property to control counting ambiguous
symbols. Enter 'Count' to add partial counts
to the standard symbols.

Limits Property to specify using part of the sequences.
Enter a [1x2] vector with the first position and
the last position to include in the profile. The
default value is [1,SeqLength].

Description Profile = seqprofile(Seqs, 'PropertyName', PropertyValue ...)
returns a matrix (Profile) of size [20 (or 4) x SequenceLength]
with the frequency of amino acids (or nucleotides) for every column in
the multiple alignment. The order of the rows is given by

• 4 nucleotides — A C G T/U

• 20 amino acids — A R N D C Q E G H I L K M F P S T W Y V

[Profile, Symbols] = seqprofile(Seqs) returns a unique symbol list
(Symbols) where every symbol in the list corresponds to a row in the
profile (Profile).

seqprofile(..., 'Alphabet', AlphabetValue) selects a nucleotide
alphabet, amino acid alphabet, or no alphabet.

seqprofile(..., 'Counts', CountsValue) when Counts is true, returns
the counts instead of the frequency.

seqprofile(..., 'Gaps', GapsValue) appends a row to the bottom of a
profile (Profile) with the count for gaps.

seqprofile(..., 'Ambiguous', AmbiguousValue), when Ambiguous
is 'count', counts the ambiguous amino acid symbols (B Z X) and
nucleotide symbols (R Y K M S W B D H V N) with the standard
symbols. For example, the amino acid X adds a 1/20 count to every row
while the amino acid B counts as 1/2 at the D and N rows.

seqprofile(..., 'Limits', LimitsValue) specifies the start and end
positions for the profile relative to the indices of the multiple alignment.

2-719

seqprofile

Examples seqs = fastaread('pf00002.fa');
[P,S] = seqprofile(seqs,'limits',[50 60],'gaps','all')

See Also Bioinformatics Toolbox functions fastaread, multialignread,
seqconsensus, seqdisp, seqlogo

2-720

seqrcomplement

Purpose Calculate reverse complement of nucleotide sequence

Syntax SeqRC = seqrcomplement(SeqNT)

Arguments
SeqNT Nucleotide sequence. Enter either a character string

with the characters A, T (U), G, C, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of
integers. You can also enter a structure with the field
Sequence.

Description seqrcomplement calculates the reverse complementary strand of a
DNA sequence.

SeqRC = seqrcomplement(SeqNT) calculates the reverse complementary
strand 3' --> 5' (A-->T, C-->G, G-->C, T-->A) for a DNA sequence and
returns a sequence in the same format as SeqNT. For example, if SeqNT
is an integer sequence then so is SeqRC.

Examples Reverse a DNA nucleotide sequence and then return its complement.

s = 'ATCG'
seqrcomplement(s)

ans =
CGAT

See Also Bioinformatics Toolbox functions codoncount, palindromes
seqcomplement, seqreverse, seqtool

2-721

seqreverse

Purpose Reverse letters or numbers in nucleotide sequence

Syntax SeqR = seqreverse(SeqNT)

Arguments
SeqNT Enter a nucleotide sequence. Enter either a character

string with the characters A, T (U), G, C, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of
integers. You can also enter a structure with the field
Sequence.

SeqR Returns a sequence in the same format as the nucleotide
sequence. For example, if SeqNT is an integer sequence,
then so is SeqR.

Description seqreverse calculates the reverse strand of a DNA or RNA sequence.

SeqR = seqreverse(SeqNT) calculates the reverse strand 3’ --> 5’ of the
nucleotide sequence.

Examples Reverse a nucleotide sequence.

s = 'ATCG'
seqreverse(s)

ans =
GCTA

See Also Bioinformatics Toolbox functions: seqcomplement, seqrcomplement,
seqtool

MATLAB function: fliplr

2-722

seqshoworfs

Purpose Display open reading frames in sequence

Syntax seqshoworfs(SeqNT)
seqshoworfs(SeqNT, ...'Frames', FramesValue, ...)
seqshoworfs(SeqNT, ...'GeneticCode', GeneticCodeValue, ...)
seqshoworfs(SeqNT, ...'MinimumLength', MinimumLengthValue,

...)
seqshoworfs(SeqNT, ...'AlternativeStartCodons',

AlternativeStartCodonsValue, ...)
seqshoworfs(SeqNT, ...'Color', ColorValue, ...)
seqshoworfs(SeqNT, ...'Columns', ColumnsValue, ...)

Arguments
SeqNT Nucleotide sequence. Enter either a

character string with the characters
A, T (U), G, C, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V,
N, or a vector of integers. You can
also enter a structure with the field
Sequence.

FramesValue Property to select the frame. Enter
1, 2, 3, -1, -2, -3, enter a vector with
integers, or 'all'. The default value
is the vector [1 2 3]. Frames -1,
-2, and -3 correspond to the first,
second, and third reading frames for
the reverse complement.

GeneticCodeValue Genetic code name. Enter a code
number or a code name from the
table see .

MinimumLengthValue Property to set the minimum number
of codons in an ORF.

2-723

seqshoworfs

AlternativeStartCodonsValueProperty to control using alternative
start codons. Enter either true or
false. The default value is false.

ColorValue Property to select the color for
highlighting the reading frame.
Enter either a 1-by-3 RGB vector
specifying the intensity (0 to 255) of
the red, green, and blue components
of the color, or a character from
the following list: 'b'—blue,
'g'—green, 'r'—red, 'c'—cyan,
'm'—magenta, or 'y'—yellow.

To specify different colors for the
three reading frames, use a 1-by-3
cell array of color values. If you
are displaying reverse complement
reading frames, then COLOR should
be a 1-by-6 cell array of color values.

ColumnsValue Property to specify the number of
columns in the output.

Description seqshoworfs identifies and highlights all open reading frames using
the standard or an alternative genetic code.

seqshoworfs(SeqNT) displays the sequence with all open reading
frames highlighted, and it returns a structure of start and stop positions
for each ORF in each reading frame. The standard genetic code is used
with start codon 'AUG' and stop codons 'UAA', 'UAG', and 'UGA'.

seqshoworfs(SeqNT, ...'PropertyName', PropertyValue, ...)
calls seqshoworfs with optional properties that use property
name/property value pairs. You can specify one or more properties in
any order. Each PropertyName must be enclosed in single quotes and
is case insensitive. These property name/property value pairs are as
follows:

2-724

seqshoworfs

seqshoworfs(SeqNT, ...'Frames', FramesValue, ...) specifies the
reading frames to display. The default is to display the first, second, and
third reading frames with ORFs highlighted in each frame.

seqshoworfs(SeqNT, ...'GeneticCode', GeneticCodeValue, ...)
specifies the genetic code to use for finding open reading frames.

seqshoworfs(SeqNT, ...'MinimumLength',
MinimumLengthValue, ...) sets the minimum number
of codons for an ORF to be considered valid. The default value is 10.

seqshoworfs(SeqNT,
...'AlternativeStartCodons', AlternativeStartCodonsValue, ...)
uses alternative start codons if AlternativeStartCodons is set to true.
For example, in the human mitochondrial genetic code, AUA
and AUU are known to be alternative start codons. For more
details on alternative start codons, see

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG1

seqshoworfs(SeqNT, ...'Color', ColorValue, ...) selects the
color used to highlight the open reading frames in the output display.
The default color scheme is blue for the first reading frame, red for the
second, and green for the third frame.

seqshoworfs(SeqNT, ...'Columns', ColumnsValue, ...) specifies
how many columns per line to use in the output. The default value
is 64.

Examples Look for the open reading frames in a random nucleotide sequence.

s = randseq(200, 'alphabet', 'dna');
seqshoworfs(s);

2-725

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG1

seqshoworfs

2-726

seqshoworfs

Identify the open reading frames in a GenBank sequence.

HLA_DQB1 = getgenbank('NM_002123');
seqshoworfs(HLA_DQB1.Sequence);

See Also Bioinformatics Toolbox functions: codoncount, cpgisland,
geneticcode, seqdisp, seqshowwords, seqtool, seqwordcount

MATLAB function: regexp

2-727

seqshowwords

Purpose Graphically display words in sequence

Syntax seqshowwords(Seq, Word)
seqshowwords(Seq, Word, ...'Color', ColorValue, ...)
seqshowwords(Seq, Word, ...'Columns', ColumnsValue, ...)
seqshowwords(Seq, Word, ...'Alphabet', AlphabetValue, ...)

Arguments
Seq Enter either a nucleotide or amino acid sequence.

You can also enter a structure with the field
Sequence.

Word Enter a short character sequence.

ColorValue Property to select the color for highlighted
characters. Enter a 1-by-3 RGB vector specifying
the intensity (0 255) of the red, green, and blue
components, or enter a character from the following
list: 'b'– blue, 'g'– green, 'r'– red, 'c'– cyan,
'm'– magenta, or 'y'– yellow.

The default color is red 'r'.

ColumnsValue Property to specify the number of characters in a
line. Default value is 64.

AlphabetValue Property to select the alphabet. Enter 'AA' for
amino acid sequences or 'NT' for nucleotide
sequences. The default is 'NT'.

Description seqshowwords(Seq, Word) displays the sequence with all occurrences
of a word highlighted, and returns a structure with the start and stop
positions for all occurrences of the word in the sequence.

seqshowwords(Seq, Word, ...'PropertyName',
PropertyValue, ...) calls seqshowwords with optional
properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must

2-728

seqshowwords

be enclosed in single quotes and is case insensitive. These property
name/property value pairs are as follows:

seqshowwords(Seq, Word, ...'Color', ColorValue, ...) selects
the color used to highlight the words in the output display.

seqshowwords(Seq, Word, ...'Columns', ColumnsValue, ...)
specifies how many columns per line to use in the output.

seqshowwords(Seq, Word, ...'Alphabet', AlphabetValue, ...)
selects the alphabet for the sequence (Seq) and the word (Word).

If the search work (Word) contains nucleotide or amino acid symbols
that represent multiple possible symbols, then seqshowwords shows all
matches. For example, the symbol R represents either G or A (purines).
If Word is 'ART', then seqshowwords shows occurrences of both 'AAT'
and 'AGT'.

Examples This example shows two matches, 'TAGT' and 'TAAT', for the word
'BART'.

seqshowwords('GCTAGTAACGTATATATAAT','BART')

ans =
Start: [3 17]
Stop: [6 20]

000001 GCTAGTAACGTATATATAAT

seqshowwords does not highlight overlapping patterns multiple times.
This example highlights two places, the first occurrence of 'TATA'
and the 'TATATATA' immediately after 'CG'. The final 'TA' is not
highlighted because the preceding 'TA' is part of an already matched
pattern.

seqshowwords('GCTATAACGTATATATATA','TATA')

ans =
Start: [3 10 14]

2-729

seqshowwords

Stop: [6 13 17]

000001 GCTATAACGTATATATATA

To highlight all multiple repeats of TA, use the regular expression
'TA(TA)*TA'.

seqshowwords('GCTATAACGTATATATATA','TA(TA)*TA')

ans =
Start: [3 10]
Stop: [6 19]

000001 GCTATAACGTATATATATA

See Also Bioinformatics Toolbox functions: palindromes, cleave, restrict,
seqdisp, seqtool, seqwordcount

MATLAB functions: strfind, regexp

2-730

seqtool

Purpose Open tool to interactively explore biological sequences

Syntax seqtool(Seq)
seqtool(..., 'PropertyName', PropertyValue,...)
seqtool(..., 'Alphabet', AlphabetValue)

Arguments
Seq Struct with a field Sequence, a character array, or a file name

with an extension of .gbk, .gpt, .fasta, .fa, or .ebi

Description seqtool(Seq) loads a sequence (Seq) into the seqtool GUI.

seqtool(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

seqtool(..., 'Alphabet', AlphabetValue) specifies an alphabet
(AlphabetValue) for the sequence (Seq). Default is 'AA', except
when all of the symbols in the sequence are A, C, G, T, and -, then
AlphabetValue is set to 'NT'. Use 'AA' when you want to force an
amino acid sequence alphabet.

Example 1 Get a sequence from Genbank.

S = getgenbank('M10051')

2 Open the sequence tool window with the sequence.

seqtool(S)

2-731

seqtool

See Also Bioinformatics Toolbox functions: aa2nt, aacount, aminolookup,
basecount, baselookup, dimercount, emblread, fastaread,
fastawrite, genbankread, geneticcode, genpeptread, getembl,
getgenbank, getgenpept, nt2aa, proteinplot, seqcomplement,
seqdisp, seqrcomplement, seqreverse, seqshoworfs, seqshowwords,
seqwordcount

2-732

seqwordcount

Purpose Count number of occurrences of word in sequence

Syntax seqwordcount(Seq, Word)

Arguments
Seq Enter a nucleotide or amino acid sequence of characters.

You can also enter a structure with the field Sequence.

Word Enter a short sequence of characters.

Description seqwordcount(Seq, Word) counts the number of times that a word
appears in a sequence, and then returns the number of occurrences of
that word.

If Word contains nucleotide or amino acid symbols that represent
multiple possible symbols (ambiguous characters), then seqwordcount
counts all matches. For example, the symbol R represents either
G or A (purines). For another example, if word equals 'ART', then
seqwordcount counts occurrences of both 'AAT' and 'AGT'.

Examples seqwordcount does not count overlapping patterns multiple times. In
the following example, seqwordcount reports three matches. TATATATA
is counted as two distinct matches, not three overlapping occurrences.

seqwordcount('GCTATAACGTATATATAT','TATA')

ans =
3

The following example reports two matches ('TAGT' and 'TAAT'). B
is the ambiguous code for G, T, or C, while R is an ambiguous code for
G and A.

seqwordcount('GCTAGTAACGTATATATAAT','BART')

ans =
2

2-733

seqwordcount

See Also Bioinformatics Toolbox functions codoncount, seqshoworfs,
seqshowwords, seqtool, seq2regexp

MATLAB functions strfind

2-734

showalignment

Purpose Sequence alignment with color

Syntax showalignment(Alignment)
showalignment(Alignment, ...'MatchColor',
MatchColorValue, ...)
showalignment(Alignment,
...'SimilarColor' SimilarColorValue,

...)
showalignment(Alignment, ...'StartPointers',

StartPointersValue, ...)
showalignment(Alignment, ...'Columns', ColumnsValue, ...)

Arguments
Alignment For pairwise alignments, matches and

similar residues are highlighted and
Alignment is the output from one of
the functions nwalign or swalign. For
multiple sequence alignment highly
conserved columns are highlighted and
Alignment is the output from the function
multialign.

MatchColorValue Property to select the color to highlight
matching characters. Enter a 1-by-N RGB
vector specifying the intensity (0 to 255) of
the red, green, and blue components, or
enter a character from the following list:
'b'– blue, 'g'– green, 'r'– red, 'c'–
cyan, 'm'– magenta, or 'y'– yellow.

The default color is red, 'r'.

SimilarColorValue Property to select the color to highlight
similar characters. Enter a 1-by-3 RGB
vector or color character. The default color
is magenta.

2-735

showalignment

StarterPointersValue Property to specify the starting indices of
the aligned sequences. StartPointers is
the two element vector returned as the
third output of the function swalign.

ColumnsValue Property to specify the number of
characters in a line. Enter the number
of characters to display in one row. The
default value is 64.

Description showalignment(Alignment) displays an alignment in a MATLAB
figure window.

showalignment(Alignment, ...'PropertyName',
PropertyValue, ...) calls showalignment with optional
properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must
be enclosed in single quotes and is case insensitive. These property
name/property value pairs are as follows:

showalignment(Alignment, ...'MatchColor',
MatchColorValue, ...) selects the color to highlight the matches in
the output display. The default color is red. For example, to use cyan,
enter 'c' or [0 255 255].

showalignment(Alignment, ...'SimilarColor'
SimilarColorValue, ...) selects the color to highlight
similar residues that are not exact matches. The default color is
magenta.

The following options are only available when showing pairwise
alignments:

showalignment(Alignment,
...'StartPointers', StartPointersValue, ...) specifies the
starting indices in the original sequences of a local alignment.

showalignment(Alignment, ...'Columns', ColumnsValue, ...)
specifies how many columns per line to use in the output, and labels the
start of each row with the sequence positions.

2-736

showalignment

Examples Enter two amino acid sequences and show their alignment.

[Score, Alignment] = nwalign('VSPAGMASGYD','IPGKASYD');
showalignment(Alignment);

Enter a multiply aligned set of sequences and show their alignment.

gag = multialignread('aagag.aln');
showalignment(gag)

See Also Bioinformatics Toolbox functions: nwalign, swalign

2-737

showhmmprof

Purpose Plot Hidden Markov Model (HMM) profile

Syntax showhmmprof(Model)
showhmmprof(..., 'PropertyName', PropertyValue,...)
showhmmprof(..., 'Scale', ScaleValue)
showhmmprof(..., 'Order', OrderValue)

Arguments Model Hidden Markov model created by the function
gethmmprof or pfamhmmread.

ScaleValue Property to select a probability scale. Enter one of the
following values:
• 'logprob' — Log probabilities

• 'prob' — Probabilities

• 'logodds' — Log-odd ratios

OrderValue Property to specify the order of the amino acid
alphabet. Enter a character string with the 20
standard amino acids characters A R N D C Q E G H
I L K M F P S T W Y V. The ambiguous characters B
Z X are not allowed.

Description showhmmprof(Model) plots a profile hidden Markov model described by
the structure Model.

showhmmprof(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

showhmmprof(..., 'Scale', ScaleValue) specifies the scale to
use. If log probabilities (ScaleValue='logprob'), probabilities
(ScaleValue='prob'), or log-odd ratios (ScaleValue='logodds'). To
compute the log-odd ratios, the null model probabilities are used for
symbol emission and equally distributed transitions are used for the
null transition probabilities. The default ScaleValue is 'logprob'.

showhmmprof(..., 'Order', OrderValue) specifies the order in
which the symbols are arranged along the vertical axis. This option

2-738

showhmmprof

allows you reorder the alphabet and group the symbols according to
their properties.

Examples 1 Load a model example.

model = pfamhmmread('pf00002.ls')

2 Plot the profile.

showhmmprof(model, 'Scale', 'logodds')

3 Order the alphabet by hydrophobicity.

hydrophobic = 'IVLFCMAGTSWYPHNDQEKR'

4 Plot the profile.

showhmmprof(model, 'Order', hydrophobic)

See Also Bioinformatics Toolbox functions: gethmmprof, hmmprofalign,
hmmprofestimate, hmmprofgenerate, hmmprofstruct, pfamhmmread

2-739

sptread

Purpose Read data from SPOT file

Syntax SPOTData = sptread(File)
SPOTData = sptread(File, 'CleanColNames',
CleanColNamesValue)

Arguments
File Either of the following:

• String specifying a file name, a path and
file name, or a URL pointing to a file. The
referenced file is a SPOT-formatted file
(ASCII text file). If you specify only a file
name, that file must be on the MATLAB
search path or in the MATLAB Current
Directory.

• MATLAB character array that contains the
text of a SPOT-formatted file.

CleanColNamesValue Property to control using valid MATLAB
variable names.

Description SPOTData = sptread(File) reads a SPOT formatted file, File,) and
creates a MATLAB structure, SPOTData, containing the following fields:

Header
Data
Blocks
Columns
Rows
IDs
ColumnNames
Indices
Shape

2-740

sptread

SPOTData = sptread(File, 'CleanColNames',
CleanColNamesValue) The column names in the SPOT file contain
periods and some characters that cannot be used in MATLAB variable
names. If you plan to use the column names as variable names in a
function, use this option with CleanColNames set to true and the
function will return the field ColumnNames with valid variable names.

The Indices field of the structure includes the MATLAB indices that
you can use for plotting heat maps of the data.

Examples 1 Read in a sample SPOT file and plot the median foreground intensity
for the 635 nm channel. Note that the example file spotdata.txt
is not provided with Bioinformatics Toolbox.

spotStruct = sptread('spotdata.txt')
maimage(spotStruct,'Rmedian');

2 Alternatively, create a similar plot using more basic graphics
commands.

Rmedian = magetfield(spotStruct,'Rmedian');
imagesc(Rmedian(spotStruct.Indices));
colormap bone
colorbar

See Also Bioinformatics Toolbox functions: affyread, agferead,
celintensityread, geosoftread, gprread, imageneread, maboxplot,
magetfield

2-741

svmclassify

Purpose Classify data using support vector machine

Syntax Group = svmclassify(SVMStruct, Sample)
Group = svmclassify(SVMStruct, Sample, 'Showplot',
ShowplotValue)

Description Group = svmclassify(SVMStruct, Sample) classifies each row of the
data in Sample using the information in a support vector machine
classifier structure SVMStruct, created using the svmtrain function.
Sample must have the same number of columns as the data used to
train the classifier in svmtrain. Group indicates the group to which
each row of Sample has been assigned.

Group = svmclassify(SVMStruct, Sample, 'Showplot',
ShowplotValue) controls the plotting of the sample data in the figure
created using the Showplot property with the svmtrain function.

Examples 1 Load the sample data, which includes Fisher’s iris data of 5
measurements on a sample of 150 irises.

load fisheriris

2 Create data, a two-column matrix containing sepal length and sepal
width measurements for 150 irises.

data = [meas(:,1), meas(:,2)];

3 From the species vector, create a new column vector, groups, to
classify data into two groups: Setosa and non-Setosa.

groups = ismember(species,'setosa');

4 Randomly select training and test sets.

[train, test] = crossvalind('holdOut',groups);
cp = classperf(groups);

2-742

svmclassify

5 Use the svmtrain function to train an SVM classifier using a linear
kernel function and plot the grouped data.

svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);

6 Add a title to the plot, using the KernelFunction field from the
svmStruct structure as the title.

title(sprintf('Kernel Function: %s',...
func2str(svmStruct.KernelFunction)),...
'interpreter','none');

2-743

svmclassify

7 Classify the test set using a support vector machine.

classes = svmclassify(svmStruct,data(test,:),'showplot',true);

2-744

svmclassify

8 Evaluate the performance of the classifier.

classperf(cp,classes,test);
cp.CorrectRate

ans =

0.9867

9 Use a one-norm, hard margin support vector machine classifier by
changing the boxconstraint property.

2-745

svmclassify

figure
svmStruct = svmtrain(data(train,:),groups(train),...

'showplot',true,'boxconstraint',1e6);

classes = svmclassify(svmStruct,data(test,:),'showplot',true);

2-746

svmclassify

10 Evaluate the performance of the classifier.

classperf(cp,classes,test);
cp.CorrectRate

ans =

0.9867

2-747

svmclassify

References [1] Kecman, V., Learning and Soft Computing, MIT Press, Cambridge,
MA. 2001.

[2] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B.,
and Vandewalle, J., Least Squares Support Vector Machines, World
Scientific, Singapore, 2002.

[3] Scholkopf, B., and Smola, A.J., Learning with Kernels, MIT Press,
Cambridge, MA. 2002.

[4] Cristianini, N., and Shawe-Taylor, J. (2000). An Introduction
to Support Vector Machines and Other Kernel-based Learning
Methods, First Edition (Cambridge: Cambridge University Press).
http://www.support-vector.net/

See Also Bioinformatics Toolbox functions: classperf, crossvalind,
knnclassify, svmtrain

Statistics Toolbox function: classify

Optimization Toolbox function: quadprog

2-748

http://www.support-vector.net/

svmsmoset

Purpose Create or edit Sequential Minimal Optimization (SMO) options
structure

Syntax SMO_OptsStruct = svmsmoset('Property1Name', Property1Value,
'Property2Name', Property2Value, ...)

SMO_OptsStruct = svmsmoset(OldOpts, 'Property1Name',
Property1Value, 'Property2Name', Property2Value, ...)

SMO_OptsStruct = svmsmoset(OldOpts, NewOpts)

Arguments OldOpts Structure that specifies options used by the SMO
method used by the svmtrain function.

NewOpts Structure that specifies options used by the SMO
method used by the svmtrain function.

PropertyName Description of PropertyValue

TolKKT Value that specifies the tolerance with which the
KKT conditions are checked. KKT conditions
are Karush-Kuhn-Tucker conditions. Default is
1.0000e-003.

MaxIter Integer that specifies the maximum number
of iterations of the main loop. If this limit
is exceeded before the algorithm converges,
then the algorithm stops and returns an error.
Default is 1500.

2-749

http://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions

svmsmoset

PropertyName Description of PropertyValue

Display String that specifies the level of information
about the optimization iterations that is
displayed as the algorithm runs. Choices are:
• off — Default. Reports nothing.

• iter — Reports every 10 iterations.

• final — Reports only when the algorithm
finishes.

KKTViolationLevel Value that specifies the fraction of variables
allowed to violate the KKT conditions. Choices
are any value ≥ 0 and < 1. Default is 0. For
example, if you set KKTViolationLevel to 0.05,
then 5% of the variables are allowed to violate
the KKT conditions.

Tip Set this option to a positive value to help
the algorithm converge if it is fluctuating near a
good solution.

For more information on KKT conditions, see
Cristianini, et al. 2000.

KernelCacheLimit Value that specifies the size of the kernel matrix
cache. The algorithm keeps a matrix with up
to KernelCacheLimit × KernelCacheLimit
double-precision, floating-point numbers in
memory. Default is 7500.

Return
Values

SMO_OptsStruct Structure that specifies options used by the SMO
method used by the svmtrain function.

2-750

svmsmoset

Description SMO_OptsStruct = svmsmoset('Property1Name', Property1Value,
'Property2Name', Property2Value, ...) creates SMO_OptsStruct,
an SMO options structure from the specified inputs. This structure can
be used as input for the svmtrain function.

SMO_OptsStruct = svmsmoset(OldOpts, 'Property1Name',
Property1Value, 'Property2Name', Property2Value, ...) alters
the options in OldOpts, an existing SMO options structure, with the
specified inputs, creating a new output options structure.

SMO_OptsStruct = svmsmoset(OldOpts, NewOpts) alters the options
in OldOpts, an existing SMO options structure, with the options
specified in NewOpts, another SMO options structure, creating a new
output options structure.

Examples 1 Create an SMO options structure and specify the Display, MaxIter,
and KernelCacheLimit properties.

opts = svmsmoset('Display','final','MaxIter',200,...
'KernelCacheLimit',1000)

opts =

Display: 'final'
TolKKT: 1.0000e-003

MaxIter: 200
KKTViolationLevel: 0
KernelCacheLimit: 1000

2 Create an alternate SMO options structure from the previous
structure. Specify different Display and KKTViolationLevel
properties.

alt_opts = svmsmoset(opts,'Display','iter','KKTViolationLevel',.05)

alt_opts =

Display: 'iter'

2-751

svmsmoset

TolKKT: 1.0000e-003

MaxIter: 200

KKTViolationLevel: 0.0500

KernelCacheLimit: 1000

References [1] Cristianini, N., and Shawe-Taylor, J. (2000). An Introduction
to Support Vector Machines and Other Kernel-based Learning
Methods, First Edition (Cambridge: Cambridge University Press).
http://www.support-vector.net/

[2] Platt, J.C. (1999). Sequential Minimal Optimization: A Fast
Algorithm for Training Support Vector Machines. In Advances in
Kernel Methods - Support Vector Learning, B. Scholkopf, J.C. Burges,
and A.J. Smola, eds. (Cambridge MA: MIT Press), pp. 185–208.

See Also Bioinformatics Toolbox functions: svmclassify, svmtrain

Optimization Toolbox functions: optimset

2-752

http://www.support-vector.net/

svmtrain

Purpose Train support vector machine classifier

Syntax SVMStruct = svmtrain(Training, Group)
SVMStruct = svmtrain(..., 'Kernel_Function',
Kernel_FunctionValue, ...)
SVMStruct = svmtrain(..., 'RBF_Sigma', RBFSigmaValue, ...)
SVMStruct = svmtrain(..., 'Polyorder', PolyorderValue, ...)
SVMStruct = svmtrain(..., 'Mlp_Params',
Mlp_ParamsValue, ...)
SVMStruct = svmtrain(..., 'Method', MethodValue, ...)
SVMStruct = svmtrain(..., 'QuadProg_Opts',

QuadProg_OptsValue, ...)
SVMStruct = svmtrain(..., 'SMO_Opts', SMO_OptsValue, ...)
SVMStruct = svmtrain(..., 'BoxConstraint',

BoxConstraintValue, ...)
SVMStruct = svmtrain(..., 'Autoscale', AutoscaleValue, ...)
SVMStruct = svmtrain(..., 'Showplot', ShowplotValue, ...)

Arguments Training Matrix of training data, where each row
corresponds to an observation or replicate,
and each column corresponds to a feature
or variable.

Group Column vector, character array, or cell array
of strings for classifying data in Training
into two groups. It has the same number
of elements as there are rows in Training.
Each element specifies the group to which
the corresponding row in Training belongs.

2-753

svmtrain

Kernel_FunctionValue String or function handle specifying the
kernel function that maps the training data
into kernel space. Choices are:
• linear — Default. Linear kernel or dot

product.

• quadratic — Quadratic kernel.

• rbf — Gaussian Radial Basis Function
kernel with a default scaling factor,
sigma, of 1.

• polynomial — Polynomial kernel with a
default order of 3.

• mlp — Multilayer Perceptron kernel with
default scale and bias parameters of [1,
-1].

• @functionname — Handle to a kernel
function specified using @and the
functionname. For example, @kfun, or an
anonymous function.

RBFSigmaValue Positive number that specifies the scaling
factor, sigma, in the radial basis function
kernel. Default is 1.

PolyorderValue Positive number that specifies the order of a
polynomial kernel. Default is 3.

Mlp_ParamsValue Two-element vector, [p1, p2], that
specifies the scale and bias parameters of
the multilayer perceptron (mlp) kernel. K =
tanh(p1*U*V' + p2). p1 must be > 0, and
p2 must be < 0. Default is [1, -1].

2-754

svmtrain

MethodValue String specifying the method to find the
separating hyperplane. Choices are:
• QP — Quadratic Programming (requires

Optimization Toolbox). The classifier is
a two-norm, soft-margin support vector
machine.

• SMO — Sequential Minimal Optimization.
The classifier is a one-norm, soft-margin
support vector machine.

• LS — Least-Squares.

If you installed Optimization Toolbox, the
QP method is the default. Otherwise, the
SMO method is the default.

QuadProg_OptsValue An options structure created by the
optimset function (Optimization Toolbox).
This structure specifies options used by
the QP method. For more information on
creating this structure, see the optimset
and quadprog reference pages.

SMO_OptsValue An options structure created by the
svmsmoset function. This structure specifies
options used by the SMO method. For more
information on creating this structure, see
the svmsmoset function.

2-755

svmtrain

BoxConstraintValue Box constraints for the soft margin. Choices
are:
• Strictly positive numeric scalar.

• Array of strictly positive values with the
number of elements equal to the number
of rows in the Training matrix.

If BoxConstraintValue is a scalar, it is
automatically rescaled by N/(2*N1) for the
data points of group one and by N/(2*N2)
for the data points of group two. N1 is the
number of elements in group one, N2 is the
number of elements in group two, and N =
N1 + N2. This rescaling is done to take into
account unbalanced groups, that is cases
where N1 and N2 have very different values.

If BoxConstraintValue is an array, then
each array element is taken as a box
constraint for the data point with the same
index.
Default is a scalar value of 1.

AutoscaleValue Controls the shifting and scaling of
data points before training. When
AutoscaleValue is true, the columns of
the input data matrix Training are shifted
to zero mean and scaled to unit variance.
Default is false.

ShowplotValue Controls the display of a plot of the grouped
data, including the separating line for the
classifier, when using two-dimensional data.
Choices are true or false (default).

2-756

svmtrain

Return
Values

SVMStruct Structure containing information about
the trained SVM classifier, including the
following fields:
• SupportVectors

• Alpha

• Bias

• KernelFunction

• KernelFunctionArgs

• GroupNames

• SupportVectorIndices

• ScaleData

• FigureHandles

Tip You can use SVMStruct as input
to the svmclassify function, to use for
classification.

Description SVMStruct = svmtrain(Training, Group) trains a support vector
machine (SVM) classifier using Training, a matrix of training data
taken from two groups, specified by Group. svmtrain treats NaNs or
empty strings in Group as missing values and ignores the corresponding
rows of Training. Information about the trained SVM classifier is
returned in SVMStruct, a structure with the following fields.

• SupportVectors

• Alpha

• Bias

• KernelFunction

2-757

svmtrain

• KernelFunctionArgs

• GroupNames

• SupportVectorIndices

• ScaleData

• FigureHandles

SVMStruct = svmtrain(Training, Group, ...'PropertyName',
PropertyValue, ...) calls svmtrain with optional properties that
use property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single
quotation marks and is case insensitive. These property name/property
value pairs are as follows:

SVMStruct = svmtrain(..., 'Kernel_Function',
Kernel_FunctionValue, ...) specifies the kernel function
(Kernel_FunctionValue) that maps the training data into kernel space.
Kernel_FunctionValue can be one of the following strings or a function
handle:

• linear — Default. Linear kernel or dot product.

• quadratic — Quadratic kernel.

• rbf — Gaussian Radial Basis Function kernel with a default scaling
factor, sigma, of 1.

• polynomial — Polynomial kernel with a default order of 3.

• mlp — Multilayer Perceptron kernel with default scale and bias
parameters of [1, -1].

• @functionname — Handle to a kernel function specified using @and
the functionname. For example, @kfun, or an anonymous function.

A kernel function must be of the following form:

function K = kfun(U, V)

2-758

svmtrain

Input arguments U and V are matrices with m and n rows respectively.
Return value K is an m-by-n matrix. If kfun is parameterized, you
can use anonymous functions to capture the problem-dependent
parameters. For example, suppose that your kernel function is:

function K = kfun(U,V,P1,P2)
K = tanh(P1*(U*V')+P2);

You can set values for P1 and P2 and then use an anonymous function
as follows:

@(U,V) kfun(U,V,P1,P2)

For more information on the types of functions that can be used as
kernel functions, see Cristianini and Shawe-Taylor, 2000.

SVMStruct = svmtrain(..., 'RBF_Sigma', RBFSigmaValue, ...)
specifies the scaling factor, sigma, in the radial basis function kernel.
RBFSigmaValue must be a positive number. Default is 1.

SVMStruct = svmtrain(..., 'Polyorder', PolyorderValue, ...)
specifies the order of a polynomial kernel. PolyorderValue must be
a positive number. Default is 3.

SVMStruct = svmtrain(..., 'Mlp_Params', Mlp_ParamsValue,
...) specifies the scale and bias parameters of the multilayer
perceptron (mlp) kernel as a two-element vector, [p1, p2]. K =
tanh(p1*U*V' + p2), p1 > 0, and p2 < 0. p1 must be > 0, and p2
must be < 0. Default is [1, -1].

SVMStruct = svmtrain(..., 'Method', MethodValue, ...)
specifies the method to find the separating hyperplane. Choices are:

• QP — Quadratic Programming (requires Optimization Toolbox). The
classifier is a two-norm, soft-margin support vector machine.

• SMO — Sequential Minimal Optimization. The classifier is a
one-norm, soft-margin support vector machine.

• LS — Least-Squares.

2-759

svmtrain

If you installed Optimization Toolbox, the QP method is the default.
Otherwise, the SMO method is the default.

Note If you specify the QP method, the classifier is a two-norm,
soft-margin support vector machine.

SVMStruct = svmtrain(..., 'QuadProg_Opts',
QuadProg_OptsValue, ...) specifies an options structure
created by the optimset function (Optimization Toolbox). This structure
specifies options used by the QP method. For more information on
creating this structure, see the optimset and quadprog functions.

SVMStruct = svmtrain(..., 'SMO_Opts', SMO_OptsValue, ...)
specifies an options structure created by svmsmoset function. This
structure specifies options used by the SMO method. For more
information on creating this structure, see the svmsmoset function.

SVMStruct = svmtrain(..., 'BoxConstraint',
BoxConstraintValue, ...) specifies box constraints for the
soft margin. BoxConstraintValue can be either of the following:

• Strictly positive numeric scalar

• Array of strictly positive values with the number of elements equal to
the number of rows in the Training matrix

If BoxConstraintValue is a scalar, it is automatically rescaled by
N/(2*N1) for the data points of group one and by N/(2*N2) for the data
points of group two. N1 is the number of elements in group one, N2 is
the number of elements in group two, and N = N1 + N2. This rescaling
is done to take into account unbalanced groups, that is cases where N1
and N2 have very different values.

If BoxConstraintValue is an array, then each array element is taken as
a box constraint for the data point with the same index.

2-760

svmtrain

Default is a scalar value of 1.

SVMStruct = svmtrain(..., 'Autoscale', AutoscaleValue, ...)
controls the shifting and scaling of data points before training. When
AutoscaleValue is true, the columns of the input data matrix Training
are shifted to zero mean and scaled to unit variance. Default is false.

SVMStruct = svmtrain(..., 'Showplot', ShowplotValue, ...),
controls the display of a plot of the grouped data , including the
separating line for the classifier, when using two-dimensional data.
Choices are true or false (default).

Memory Usage and Out of Memory Error

When you set 'Method' to 'QP', the svmtrain function operates on a
data set containing N elements, it creates an (N+1)-by-(N+1) matrix to
find the separating hyperplane. This matrix needs at least 8*(n+1)^2
bytes of contiguous memory. If this size of contiguous memory is not
available, MATLAB displays an “out of memory” message.

When you set 'Method' to 'SMO', memory consumption is controlled
by the SMO option KernelCacheLimit. For more information on the
KernelCacheLimit option, see the svmsmoset function. The SMO
algorithm stores only a submatrix of the kernel matrix, limited by the
size specified by the KernelCacheLimit option. However, if the number
of data points exceeds the size specified by the KernelCacheLimit
option, the SMO algorithm slows down because it has to recalculate
the kernel matrix elements.

When using svmtrain on large data sets, and you run out of memory or
the optimization step is very time consuming, try either of the following:

• Use a smaller number of samples and use cross validation to test
the performance of the classifier.

• Set 'Method' to 'SMO', and set the KernelCacheLimit option
as large as your system permits. For information on setting the
KernelCacheLimit option, see the svmsmoset function.

2-761

svmtrain

Tip If you set 'Method' to 'SMO', setting the 'BoxConstraint'
property as small as possible will help the SMO algorithm run faster.

Examples 1 Load the sample data, which includes Fisher’s iris data of 5
measurements on a sample of 150 irises.

load fisheriris

2 Create data, a two-column matrix containing sepal length and sepal
width measurements for 150 irises.

data = [meas(:,1), meas(:,2)];

3 From the species vector, create a new column vector, groups, to
classify data into two groups: Setosa and non-Setosa.

groups = ismember(species,'setosa');

4 Randomly select training and test sets.

[train, test] = crossvalind('holdOut',groups);
cp = classperf(groups);

5 Train an SVM classifier using a linear kernel function and plot the
grouped data.

svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);

2-762

svmtrain

6 Add a title to the plot, using the KernelFunction field from the
svmStruct structure as the title.

title(sprintf('Kernel Function: %s',...
func2str(svmStruct.KernelFunction)),...
'interpreter','none');

2-763

svmtrain

7 Use the svmclassify function to classify the test set.

classes = svmclassify(svmStruct,data(test,:),'showplot',true);

2-764

svmtrain

8 Evaluate the performance of the classifier.

classperf(cp,classes,test);
cp.CorrectRate

ans =

0.9867

9 Use a one-norm, hard margin support vector machine classifier by
changing the boxconstraint property.

2-765

svmtrain

figure
svmStruct = svmtrain(data(train,:),groups(train),...

'showplot',true,'boxconstraint',1e6);

classes = svmclassify(svmStruct,data(test,:),'showplot',true);

2-766

svmtrain

10 Evaluate the performance of the classifier.

classperf(cp,classes,test);
cp.CorrectRate

ans =

0.9867

2-767

svmtrain

References [1] Kecman, V. (2001). Learning and Soft Computing (Cambridge, MA:
MIT Press).

[2] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B.,
and Vandewalle, J. (2002). Least Squares Support Vector Machines
(Singapore: World Scientific).

[3] Scholkopf, B., and Smola, A.J. (2002). Learning with Kernels
(Cambridge, MA: MIT Press).

[4] Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction
to Support Vector Machines and Other Kernel-based Learning
Methods, First Edition (Cambridge: Cambridge University Press).
http://www.support-vector.net/

See Also Bioinformatics Toolbox functions: knnclassify, svmclassify,
svmsmoset

Statistics Toolbox function: classify

Optimization Toolbox function: quadprog

MATLAB function: optimset

2-768

http://www.support-vector.net/

swalign

Purpose Locally align two sequences using Smith-Waterman algorithm

Syntax Score = swalign(Seq1, Seq2)
[Score, Alignment] = swalign(Seq1, Seq2)
[Score, Alignment, Start] = swalign(Seq1, Seq2)
... = swalign(Seq1,Seq2, ...'Alphabet', AlphabetValue)
... = swalign(Seq1,Seq2, ...'ScoringMatrix',

ScoringMatrixValue, ...)
... = swalign(Seq1,Seq2, ...'Scale', ScaleValue, ...)
... = swalign(Seq1,Seq2, ...'GapOpen', GapOpenValue, ...)
... = swalign(Seq1,Seq2, ...'ExtendGap',
ExtendGapValue, ...)
... = swalign(Seq1,Seq2, ...'Showscore',
ShowscoreValue, ...)

Arguments Seq1, Seq2 Amino acid or nucleotide sequences. Enter
any of the following:
• Character string of letters representing

amino acids or nucleotides, such as returned
by int2aa or int2nt

• Vector of integers representing amino acids
or nucleotides, such as returned by aa2int
or nt2int

• Structure containing a Sequence field

Tip For help with letter and integer
representations of amino acids and
nucleotides, see Amino Acid Lookup on page
2-56 or Nucleotide Lookup Table on page 2-66.

AlphabetValue String specifying the type of sequence. Choices
are 'AA' (default) or 'NT'.

2-769

swalign

ScoringMatrixValue String specifying the scoring matrix to use for
the local alignment. Choices for amino acid
sequences are:

• 'PAM40'

• 'PAM250'

• 'DAYHOFF'

• 'GONNET'

• 'BLOSUM30' increasing by 5 up to
'BLOSUM90'

• 'BLOSUM62'

• 'BLOSUM100'

Default is:

• 'BLOSUM50' (when AlphabetValue equals
'AA')

• 'NUC44' (when AlphabetValue equals
'NT')

Note All of the above scoring matrices have a
built-in scale factor that returns Score in bits.

ScaleValue Scale factor used to return Score in arbitrary
units other than bits. Choices are any positive
value. For example, if you enter log(2) for
ScaleValue, then swalign returns Score in
nats.

GapOpenValue Penalty for opening a gap in the alignment.
Choices are any positive integer. Default is 8.

2-770

swalign

ExtendGapValue Penalty for extending a gap. Choices are
any positive integer. Default is equal to
GapOpenValue.

ShowscoreValue Controls the display of the scoring space and
the winning path of the alignment. Choices
are true or false (default).

Return
Values

Score Optimal local alignment score in bits.

Alignment 3-by-N character array showing the two
sequences, Seq1 and Seq2, in the first and
third rows, and symbols representing the
optimal local alignment between them in the
second row.

Start 2-by-1 vector of indices indicating the starting
point in each sequence for the alignment.

Description Score = swalign(Seq1, Seq2) returns the optimal local alignment
score in bits. The scale factor used to calculate the score is provided by
the scoring matrix.

[Score, Alignment] = swalign(Seq1, Seq2) returns a 3-by-N
character array showing the two sequences, Seq1 and Seq2, in the first
and third rows, and symbols representing the optimal local alignment
between them in the second row. The symbol | indicates amino acids
or nucleotides that match exactly. The symbol : indicates amino
acids or nucleotides that are related as defined by the scoring matrix
(nonmatches with a zero or positive scoring matrix value).

[Score, Alignment, Start] = swalign(Seq1, Seq2) returns a
2-by-1 vector of indices indicating the starting point in each sequence
for the alignment.

2-771

swalign

... = swalign(Seq1,Seq2, ...'PropertyName', PropertyValue,

...) calls swalign with optional properties that use property
name/property value pairs. You can specify one or more properties in
any order. Each PropertyName must be enclosed in single quotation
marks and is case insensitive. These property name/property value
pairs are as follows:

... = swalign(Seq1,Seq2, ...'Alphabet', AlphabetValue)
specifies the type of sequences. Choices are 'AA' (default) or 'NT'.

... = swalign(Seq1,Seq2, ...'ScoringMatrix',
ScoringMatrixValue, ...) specifies the scoring matrix to use for the
local alignment. Default is:

• 'BLOSUM50' (when AlphabetValue equals 'AA')

• 'NUC44' (when AlphabetValue equals 'NT')

... = swalign(Seq1,Seq2, ...'Scale', ScaleValue, ...)
specifies the scale factor used to return Score in arbitrary units other
than bits. Choices are any positive value.

... = swalign(Seq1,Seq2, ...'GapOpen', GapOpenValue, ...)
specifies the penalty for opening a gap in the alignment. Choices are
any positive integer. Default is 8.

... = swalign(Seq1,Seq2, ...'ExtendGap', ExtendGapValue,

...) specifies the penalty for extending a gap in the alignment. Choices
are any positive integer. Default is equal to GapOpenValue.

... = swalign(Seq1,Seq2, ...'Showscore', ShowscoreValue,

...) controls the display of the scoring space and winning path of the
alignment. Choices are true or false (default)

2-772

swalign

The scoring space is a heat map displaying the best scores for all
the partial alignments of two sequences. The color of each (n1,n2)
coordinate in the scoring space represents the best score for the pairing
of subsequences Seq1(s1:n1) and Seq2(s2:n2), where n1 is a position
in Seq1, n2 is a position in Seq2, s1 is any position in Seq1 between
1:n1, and s2 is any position in Seq2 between 1:n2. The best score for a
pairing of specific subsequences is determined by scoring all possible
alignments of the subsequences by summing matches and gap penalties.

2-773

swalign

The winning path is represented by black dots in the scoring space and
represents the pairing of positions in the optimal local alignment. The
color of the last point (lower right) of the winning path represents the
optimal local alignment score for the two sequences and is the Score
output returned by swalign.

Tip The scoring space visually shows tandem repeats, small segments
that potentially align, and partial alignments of domains from
rearranged sequences.

Examples 1 Locally align two amino acid sequences using the BLOSUM50 (default)
scoring matrix and the default values for the GapOpen and ExtendGap
properties. Return the optimal local alignment score in bits and the
alignment character array. Return the optimal global alignment
score in bits and the alignment character array.

[Score, Alignment] = swalign('VSPAGMASGYD','IPGKASYD')

Score =

8.6667

Alignment =

PAGMASGYD
| | || ||
P-GKAS-YD

2 Locally align two amino acid sequences specifying the PAM250 scoring
matrix and a gap open penalty of 5.

[Score, Alignment] = swalign('HEAGAWGHEE','PAWHEAE',...
'ScoringMatrix', 'pam250',...
'GapOpen',5)

2-774

swalign

Score =

8
Alignment =

GAWGHE
:|| ||
PAW-HE

3 Locally align two amino acid sequences returning the Score in nat
units (nats) by specifying a scale factor of log(2).

[Score, Alignment] = swalign('HEAGAWGHEE','PAWHEAE','Scale',log(2))

Score =

6.4694

Alignment =

AWGHE

|| ||

AW-HE

References [1] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological
Sequence Analysis (Cambridge University Press).

[2] Smith, T., and Waterman, M. (1981). Identification of common
molecular subsequences. Journal of Molecular Biology 147, 195–197.

See Also Bioinformatics Toolbox functions: blosum, nt2aa, nwalign, pam,
seqdotplot, showalignment

2-775

traceplot

Purpose Draw nucleotide trace plots

Syntax traceplot(TraceStructure)
traceplot(A, C, G, T)
h = traceplot()

Description traceplot(TraceStructure) creates a trace plot from data in a
structure with fields A, C, G, T.

traceplot(A, C, G, T) creates a trace plot from data in vectors A,
C, G, T.

h = traceplot() returns a structure with the handles of the lines
corresponding to A, C, G, T.

Examples tstruct = scfread('sample.scf');
traceplot(tstruct)

See Also Bioinformatics Toolbox

• function — scfread

2-776

zonebackadj

Purpose Perform background adjustment on Affymetrix microarray probe-level
data using zone-based method

Syntax BackAdjustedData = zonebackadj(Data)
[BackAdjustedData, ZoneStruct] = zonebackadj(Data)
... = zonebackadj(Data, ...'NumZones', NumZonesValue, ...)
... = zonebackadj(Data, ...'Percent', PercentValue, ...)
... = zonebackadj(Data, ...'SmoothFactor',
SmoothFactorValue,

...)
... = zonebackadj(Data, ...'NoiseFrac',
NoiseFracValue, ...)
... = zonebackadj(Data, ...'CDF', CDFValue, ...)
... = zonebackadj(Data, ...'Mask', MaskValue, ...)
... = zonebackadj(Data, ...'Showplot', ShowplotValue, ...)

Arguments
Data Either of the following:

• MATLAB structure containing probe
intensities from an Affymetrix CEL file, such
as returned by affyread when used to read
a CEL file.

• An array of MATLAB structures containing
probe intensities from multiple Affymetrix
CEL files.

NumZonesValue Scalar or two-element vector that specifies
the number of zones to use in the background
adjustment. If a scalar, it must be a square
number. If a two-element vector, the first
element specifies the number of rows and the
second element specifies the number of columns
in a nonsquare grid. Default is 16.

2-777

zonebackadj

PercentValue Value that specifies a percentage, P, such
that the lowest P percent of ranked intensity
values from each zone is used to estimate the
background for that zone. Default is 2.

SmoothFactorValue Value that specifies the smoothing factor used
in the calculation of the weighted average of the
contributions of each zone to the background of
a point. Default is 100.

NoiseFracValue Value that specifies the noise fraction, NF, such
that the background-adjusted value is given by
max((Intensity - WeightedBackground),
NF*LocalNoiseEstimate). Default is 0.5.

CDFValue Either of the following:
• String specifying a file name or path and file

name of an Affymetrix CDF library file. If
you specify only a file name, the file must
be on the MATLAB search path or in the
current directory.

• MATLAB structure containing information
from an Affymetrix CDF library file, such as
returned by affyread when used to read a
CDF file.

The CDF library file or structure specifies
control cells, which are not used in the
background estimates.

MaskValue Logical vector that specifies which cells to mask
and not use in the background estimates. In
the vector, 0 = not masked and 1 = masked.
Defaults are the values in the Masked column of
the Probes field of the CEL file.

ShowplotValue Controls the plotting of an image of the
background estimates. Choices are true or
false (default).

2-778

zonebackadj

Return
Values

BackAdjustedData Matrix or cell array of vectors containing
background-adjusted probe intensity values.

ZoneStruct MATLAB structure containing the centers of
the zones used to perform the background
adjustment and the estimates of the
background values at the center of each zone.

Description BackAdjustedData = zonebackadj(Data) returns the
background-adjusted probe intensities from Data, which contains
probe intensities from Affymetrix CEL files. Details of the background
adjustment are described in the Statistical Algorithms Description
Document.

[BackAdjustedData, ZoneStruct] = zonebackadj(Data) also
returns a structure containing the centers of the zones used to perform
the background adjustment and the estimates of the background values
at the center of each zone.

... = zonebackadj(Data, ...'PropertyName', PropertyValue,

...) calls zonebackadj with optional properties that use property
name/property value pairs. You can specify one or more properties in
any order. Each PropertyName must be enclosed in single quotation
marks and is case insensitive. These property name/property value
pairs are as follows:

... = zonebackadj(Data, ...'NumZones', NumZonesValue, ...)
specifies the number of zones to use in the background adjustment.
NumZonesValue can be either a scalar that is a square number or a
two-element array in which the first element specifies the number of
rows and the second element specifies the number of columns in a
nonsquare grid. Default is 16.

... = zonebackadj(Data, ...'Percent', PercentValue, ...)
specifies a percentage, P, such that the lowest P percent of ranked

2-779

zonebackadj

intensity values from each zone is used to estimate the background
for that zone. Default is 2.

... = zonebackadj(Data, ...'SmoothFactor',
SmoothFactorValue, ...) specifies the smoothing factor
used in the calculation of the weighted average of the contributions
of each zone to the background of a point, thus providing a smooth
transition between zones. Default is 100.

... = zonebackadj(Data, ...'NoiseFrac', NoiseFracValue,

...) specifies the noise fraction, such that the background-adjusted
value is given by max((Intensity - WeightedBackground),
NF*LocalNoiseEstimate), where NF is NoiseFracValue. Default is 0.5.

... = zonebackadj(Data, ...'CDF', CDFValue, ...) specifies an
Affymetrix CDF library file or structure, which specifies control cells,
which are not used in the background estimates.

... = zonebackadj(Data, ...'Mask', MaskValue, ...) specifies
a logical vector of that specifies which cells to mask and not use in the
background estimates. In the vector, 0 = not masked and 1 = masked.
Defaults are the values in the Masked column of the Probes field of
the CEL file.

... = zonebackadj(Data, ...'Showplot', ShowplotValue, ...)
plots an image of the background estimates. Choices are true or false
(default).

2-780

zonebackadj

Examples The following example uses a sample CEL file and CDF library file from
the E. coli Antisense Genome array, which you can download from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After you download the demo data, you will need the Affymetrix Data
Transfer Tool to extract the CEL file from a DTT file. You can download
the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/products/software/specific/dtt.affx

2-781

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/products/software/specific/dtt.affx

zonebackadj

The following example assumes that the Ecoli-antisense-121502.CEL
file is stored on the MATLAB search path or in the current directory.
It also assumes that the associated CDF library file, Ecoli_ASv2.CDF,
is stored at D:\Affymetrix\LibFiles\Ecoli.

1 Use the affyread function to read an Affymetrix CEL file and create
celStruct, a MATLAB structure containing probe intensities for
a single Affymetrix GeneChip.

celStruct = affyread('Ecoli-antisense-121502.CEL');

2 Perform background adjustment on the probe intensities in the
structure, excluding the probe intensities from the control cells on
the chip.

BackAdjMatrix = zonebackadj(celStruct, 'cdf',...
'D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF');

References [1] Statistical Algorithms Description Document,
www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf

See Also affyinvarsetnorm, affyread, celintensityread, gcrma,
gcrmabackadj, probelibraryinfo, probesetlink, probesetlookup,
probesetvalues, quantilenorm, rmabackadj, rmasummary

2-782

3

Methods — By Category

Phylogenetic Tree (p. 3-1) Select, modify, and plot phylogenetic
trees using phytree object methods

Graph Visualization (p. 3-2) View relationships between data
visually with interactive maps,
hierarchy plots, and pathways using
biograph object methods

Gene Ontology (p. 3-3) Explore and analyze Gene Ontology
data using geneont object methods

Phylogenetic Tree
Following are methods for use with a phytree object.

get (phytree) Information about phylogenetic tree
object

getbyname (phytree) Branches and leaves from phytree
object

getcanonical (phytree) Calculate canonical form of
phylogenetic tree

getmatrix (phytree) Convert phytree object into
relationship matrix

getnewickstr (phytree) Create Newick-formatted string

pdist (phytree) Calculate pair-wise patristic
distances in phytree object

3 Methods — By Category

plot (phytree) Draw phylogenetic tree

prune (phytree) Remove branch nodes from
phylogenetic tree

reorder (phytree) Reorder leaves of phylogenetic tree

reroot (phytree) Change root of phylogenetic tree

select (phytree) Select tree branches and leaves in
phytree object

subtree (phytree) Extract phylogenetic subtree

view (phytree) View phylogenetic tree

weights (phytree) Calculate weights for phylogenetic
tree

Graph Visualization
Following are methods for use with a biograph object.

allshortestpaths (biograph) Find all shortest paths in biograph
object

conncomp (biograph) Find strongly or weakly connected
components in biograph object

dolayout (biograph) Calculate node positions and edge
trajectories

getancestors (biograph) Find ancestors in biograph object

getdescendants (biograph) Find descendants in biograph object

getedgesbynodeid (biograph) Get handles to edges in biograph
object

getmatrix (biograph) Get connection matrix from biograph
object

getnodesbyid (biograph) Get handles to nodes

getrelatives (biograph) Find relatives in biograph object

3-2

Gene Ontology

isdag (biograph) Test for cycles in biograph object

isomorphism (biograph) Find isomorphism between two
biograph objects

isspantree (biograph) Determine if tree created from
biograph object is spanning tree

maxflow (biograph) Calculate maximum flow and
minimum cut in biograph object

minspantree (biograph) Find minimal spanning tree in
biograph object

shortestpath (biograph) Solve shortest path problem in
biograph object

topoorder (biograph) Perform topological sort of directed
acyclic graph extracted from
biograph object

traverse (biograph) Traverse biograph object by following
adjacent nodes

view (biograph) Draw figure from biograph object

Gene Ontology
Following are methods for use with a geneont object.

getancestors (geneont) Numeric IDs for ancestors of Gene
Ontology term

getdescendants (geneont) Numeric IDs for descendants of
Gene Ontology term

getmatrix (geneont) Convert geneont object into
relationship matrix

getrelatives (geneont) Numeric IDs for relatives of Gene
Ontology term

3-3

3 Methods — By Category

3-4

4

Methods — Alphabetical
List

allshortestpaths (biograph)

Purpose Find all shortest paths in biograph object

Syntax [dist] = allshortestpaths(BGObj)
[dist] = allshortestpaths(BGObj, ...'Directed',
DirectedValue, ...)
[dist] = allshortestpaths(BGObj, ...'Weights', WeightsValue,

...)

Arguments
BGObj biograph object created by biograph (object

constructor).

DirectedValue Property that indicates whether the graph is directed
or undirected. Enter false for an undirected graph.
This results in the upper triangle of the sparse
matrix being ignored. Default is true.

WeightsValue Column vector that specifies custom weights for the
edges in the N-by-N adjacency matrix extracted from
a biograph object, BGObj. It must have one entry for
every nonzero value (edge) in the matrix. The order
of the custom weights in the vector must match the
order of the nonzero values in the matrix when it is
traversed column-wise. This property lets you use
zero-valued weights. By default, allshortestpaths
gets weight information from the nonzero entries in
the matrix.

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

[dist] = allshortestpaths(BGObj) finds the shortest paths between
every pair of nodes in a graph represented by an N-by-N adjacency
matrix extracted from a biograph object, BGObj, using Johnson’s

4-2

allshortestpaths (biograph)

algorithm. Nonzero entries in the matrix represent the weights of the
edges.

Output dist is an N-by-N matrix where dist(S,T) is the distance of
the shortest path from node S to node T. A 0 in this matrix indicates the
source node; an Inf is an unreachable node.

Johnson’s algorithm has a time complexity of O(N*log(N)+N*E), where
N and E are the number of nodes and edges respectively.

[...] = allshortestpaths (BGObj, 'PropertyName',
PropertyValue, ...) calls allshortestpaths with optional
properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must
be enclosed in single quotes and is case insensitive. These property
name/property value pairs are as follows:

[dist] = allshortestpaths(BGObj, ...'Directed',
DirectedValue, ...) indicates whether the graph is directed
or undirected. Set DirectedValue to false for an undirected graph.
This results in the upper triangle of the sparse matrix being ignored.
Default is true.

[dist] = allshortestpaths(BGObj, ...'Weights', WeightsValue, ...)
lets you specify custom weights for the edges. WeightsValue is a
column vector having one entry for every nonzero value (edge) in the
N-by-N adjacency matrix extracted from a biograph object, BGObj. The
order of the custom weights in the vector must match the order of the
nonzero values in the N-by-N adjacency matrix when it is traversed
column-wise. This property lets you use zero-valued weights. By
default, allshortestpaths gets weight information from the nonzero
entries in the N-by-N adjacency matrix.

References [1] Johnson, D.B. (1977). Efficient algorithms for shortest paths in
sparse networks. Journal of the ACM 24(1), 1-13.

[2] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

4-3

allshortestpaths (biograph)

See Also Bioinformatics Toolbox functions: biograph (object constructor),
graphallshortestpaths

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: conncomp, isdag,
isomorphism, isspantree, maxflow, minspantree, shortestpath,
topoorder, traverse

4-4

conncomp (biograph)

Purpose Find strongly or weakly connected components in biograph object

Syntax [S, C] = conncomp(BGObj)
[S, C] = conncomp(BGObj, ...'Directed', DirectedValue, ...)
[S, C] = conncomp(BGObj, ...'Weak', WeakValue, ...)

Arguments
BGObj biograph object created by biograph (object

constructor).

DirectedValue Property that indicates whether the graph is
directed or undirected. Enter false for an
undirected graph. This results in the upper
triangle of the sparse matrix being ignored.
Default is true. A DFS-based algorithm computes
the connected components. Time complexity is
O(N+E), where N and E are number of nodes and
edges respectively.

WeakValue Property that indicates whether to find weakly
connected components or strongly connected
components. A weakly connected component
is a maximal group of nodes that are mutually
reachable by violating the edge directions. Set
WeakValue to true to find weakly connected
components. Default is false, which finds strongly
connected components. The state of this parameter
has no effect on undirected graphs because weakly
and strongly connected components are the same
in undirected graphs. Time complexity is O(N+E),
where N and E are number of nodes and edges
respectively.

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

4-5

conncomp (biograph)

[S, C] = conncomp(BGObj) finds the strongly connected components
of an N-by-N adjacency matrix extracted from a biograph object, BGObj
using Tarjan’s algorithm. A strongly connected component is a maximal
group of nodes that are mutually reachable without violating the edge
directions. The N-by-N sparse matrix represents a directed graph; all
nonzero entries in the matrix indicate the presence of an edge.

The number of components found is returned in S, and C is a vector
indicating to which component each node belongs.

Tarjan’s algorithm has a time complexity of O(N+E), where N and E are
the number of nodes and edges respectively.

[S, C] = conncomp(BGObj, ...'PropertyName',
PropertyValue, ...) calls conncomp with optional properties that
use property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single
quotes and is case insensitive. These property name/property value
pairs are as follows:

[S, C] = conncomp(BGObj, ...'Directed', DirectedValue, ...)
indicates whether the graph is directed or undirected. Set
directedValue to false for an undirected graph. This results in the
upper triangle of the sparse matrix being ignored. Default is true.
A DFS-based algorithm computes the connected components. Time
complexity is O(N+E), where N and E are number of nodes and edges
respectively.

[S, C] = conncomp(BGObj, ...'Weak', WeakValue, ...) indicates
whether to find weakly connected components or strongly connected
components. A weakly connected component is a maximal group of
nodes that are mutually reachable by violating the edge directions.
Set WeakValue to true to find weakly connected components. Default
is false, which finds strongly connected components. The state of this
parameter has no effect on undirected graphs because weakly and
strongly connected components are the same in undirected graphs.
Time complexity is O(N+E), where N and E are number of nodes and
edges respectively.

4-6

conncomp (biograph)

Note By definition, a single node can be a strongly connected
component.

Note A directed acyclic graph (DAG) cannot have any strongly
connected components larger than one.

References [1] Tarjan, R.E., (1972). Depth first search and linear graph algorithms.
SIAM Journal on Computing 1(2), 146–160.

[2] Sedgewick, R., (2002). Algorithms in C++, Part 5 Graph Algorithms
(Addison-Wesley).

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: biograph (object constructor),
graphconncomp

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object:
allshortestpaths, isdag, isomorphism, isspantree, maxflow,
minspantree, shortestpath, topoorder, traverse

4-7

dolayout (biograph)

Purpose Calculate node positions and edge trajectories

Syntax dolayout(BGobj)
dolayout(BGobj, 'Paths', PathsOnlyValue)

Arguments BGobj Biograph object created by the biograph function
(object constructor).

PathsOnlyValue Controls the calculation of only the edge paths,
leaving the nodes at their current positions.
Choices are true or false (default).

Description dolayout(BGobj) calls the layout engine to calculate the optimal
position for each node so that its 2-D rendering is clean and uncluttered,
and then calculates the best curves to represent the edges. The layout
engine uses the following properties of the biograph object:

• LayoutType — Specifies the layout engine as 'hierarchical',
'equilibrium', or 'radial'.

• LayoutScale — Rescales the sizes of the node before calling the
layout engine. This gives more space to the layout and reduces the
overlapping of nodes.

• NodeAutoSize — Controls precalculating the node size before calling
the layout engine. When NodeAutoSize is set to 'on', the layout
engine uses the node properties FontSize and Shape, and the
biograph object property LayoutScale to precalculate the actual size
of each node. When NodeAutoSize is set to 'off', the layout engine
uses the node property Size.

For more information on the above properties, see Properties of
a Biograph Object on page 5-4. For information on accessing and
specifying the above properties of a biograph object, see and .

4-8

dolayout (biograph)

dolayout(BGobj, 'Paths', PathsOnlyValue) controls the calculation
of only the edge paths, leaving the nodes at their current positions.
Choices are true or false (default).

Examples 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg = biograph(cm)
Biograph object with 5 nodes and 9 edges.
bg.nodes(1).Position

ans =

[]

Nodes do not have a position yet.

2 Call the layout engine and render the graph.

dolayout(bg)
bg.nodes(1).Position

ans =

112 224

view(bg)

3 Manually modify a node position and recalculate the paths only.

bg.nodes(1).Position = [150 150];
dolayout(bg, 'Pathsonly', true)
view(bg)

See Also Bioinformatics Toolbox function: biograph (object constructor)

Bioinformatics Toolbox object: biograph object

4-9

dolayout (biograph)

Bioinformatics Toolbox methods of a biograph object: dolayout,
getancestors, getdescendants, getedgesbynodeid, getnodesbyid,
getrelatives, view

MATLAB functions: get, set

4-10

get (phytree)

Purpose Information about phylogenetic tree object

Syntax [Value1, Value2,...] = get(Tree,
'Property1','Property2',...)
get(Tree)
V = get(Tree)

Arguments
Tree Phytree object created with the function

phytree.

Name Property name for a phytree object.

Description [Value1, Value2,...] = get(Tree,
'Property1','Property2',...) returns the specified properties
from a phytree object (Tree).

Properties for a phytree object are listed in the following table.

Property Description

NumLeaves Number of leaves

NumBranches Number of branches

NumNodes Number of nodes (NumLeaves + NumBranches)

Pointers Branch to leaf/branch connectivity list

Distances Edge length for every leaf/branch

LeafNames Names of the leaves

BranchNames Names of the branches

NodeNames Names of all the nodes

get(Tree) displays all property names and their current values for a
phytree object (Tree).

4-11

get (phytree)

V = get(Tree) returns a structure where each field name is the name
of a property of a phytree object (Tree) and each field contains the value
of that property.

Examples 1 Read in a phylogenetic tree from a file.

tr = phytreeread('pf00002.tree')

2 Get the names of the leaves.

protein_names = get(tr,'LeafNames')

protein_names =

'BAI2_HUMAN/917-1197'
'BAI1_HUMAN/944-1191'
'O00406/622-883'
...

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreeread

• phytree object methods — getbyname, select

4-12

getancestors (biograph)

Purpose Find ancestors in biograph object

Syntax Nodes = getancestors(BiographNode)
Nodes = getancestors(BiographNode, NumGenerations)

Arguments
BiographNode Node in a biograph object.

NumGenerations Number of generations. Enter a positive
integer.

Description Nodes = getancestors(BiographNode) returns a node (BiographNode)
and all of its direct ancestors.

Nodes = getancestors(BiographNode, NumGenerations) finds the
node (BiographNode) and its direct ancestors up to a specified number
of generations (NumGenerations).

Examples 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg = biograph(cm)

2 Find one generation of ancestors for node 2.

ancNodes = getancestors(bg.nodes(2));
set(ancNodes,'Color',[1 .7 .7]);
bg.view;

4-13

getancestors (biograph)

3 Find two generations of ancestors for node 2.

ancNodes = getancestors(bg.nodes(2),2);
set(ancNodes,'Color',[.7 1 .7]);
bg.view;

4-14

getancestors (biograph)

See Also Bioinformatics Toolbox function: biograph (object constructor)

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: dolayout,
getancestors, getdescendants, getedgesbynodeid, getnodesbyid,
getrelatives, view

MATLAB functions: get, set

4-15

getancestors (geneont)

Purpose Numeric IDs for ancestors of Gene Ontology term

Syntax AncestorIDs = getancestors(GeneontObj, ID)
AncestorIDs = getancestors(..., 'Height', HeightValue, ...)

Description AncestorIDs = getancestors(GeneontObj, ID) returns the numeric
IDs (AncestorIDs) for the ancestors of a term (ID) including the ID for
the term. ID is a nonnegative integer or a numeric vector with a set
of IDs.

AncestorIDs = getancestors(..., 'PropertyName',
PropertyValue,...) defines optional properties using property
name/value pairs.

AncestorIDs = getancestors(..., 'Height', HeightValue, ...)
searches up through a specified number of levels (HeightValue) in the
Gene Ontology database. HeightValue is a positive integer. Default
is Inf.

Examples 1 Download the Gene Ontology database from the Web into MATLAB.

GO = geneont('LIVE', true);

MATLAB creates a geneont object and displays the number of terms
in the database.

Gene Ontology object with 20005 Terms.

2 Get the ancestors for a Gene Ontology term.

ancestors = getancestors(GO,46680)

ancestors =
8150
9628
9636

17085
42221

4-16

getancestors (geneont)

46680
50896

3 Create a sub Gene Ontology.

subontology = GO(ancestors)

Gene Ontology object with 7 Terms.

4 View relationships using the biograph functions.

[cm acc rels] = getmatrix(subontology);
BG = biograph(cm, get(subontology.Terms, 'name'))
view(BG)

4-17

getancestors (geneont)

4-18

getancestors (geneont)

See Also Bioinformatics Toolbox

• functions — geneont (object constructor), goannotread, num2goid

• geneont object methods — getdescendants, getmatrix,
getrelatives

4-19

getbyname (phytree)

Purpose Branches and leaves from phytree object

Syntax S = getbyname(Tree, Expression)
S = getbyname(Tree, String, 'Exact', true)

Arguments
Tree phytree object created by phytree function (object

constructor).

Expression Regular expression. When Expression is a cell
array of strings, getbyname returns a matrix
where every column corresponds to every query in
Expression.

For information about the symbols that you can use
in a matching regular expression, see the MATLAB
function regexp.

String String or cell array of strings.

Description S = getbyname(Tree, Expression) returns a logical vector (S) of size
NumNodes-by-1 with the node names of a phylogenetic tree (Tree) that
match the regular expression (Expression) regardless of letter case.

S = getbyname(Tree, String, 'Exact', true) looks for exact string
matches and ignores case. When String is a cell array of char strings,
getbyname returns a vector with indices.

Examples 1 Load a phylogenetic tree created from a protein family.

tr = phytreeread('pf00002.tree');

2 Select all the ’mouse’ and ’human’ proteins.

sel = getbyname(tr,{'mouse','human'});
view(tr,any(sel,2));

4-20

getbyname (phytree)

See Also Bioinformatics Toolbox

• function — phytree (object constructor)

• phytree object methods — get, prune, select

4-21

getcanonical (phytree)

Purpose Calculate canonical form of phylogenetic tree

Syntax Pointers = getcanonical(Tree)
[Pointers, Distances, Names] = getcanonical(Tree)

Arguments
Tree phytree object created by phytree function

(object constructor).

Description Pointers = getcanonical(Tree) returns the pointers for the
canonical form of a phylogenetic tree (Tree). In a canonical tree the
leaves are ordered alphabetically and the branches are ordered first by
their width and then alphabetically by their first element. A canonical
tree is isomorphic to all the trees with the same skeleton independently
of the order of their leaves and branches.

[Pointers, Distances, Names] = getcanonical(Tree) returns,
in addition to the pointers described above, the reordered distances
(Distances) and node names (Names).

Examples 1 Create two phylogenetic trees with the same skeleton but slightly
different distances.

b = [1 2; 3 4; 5 6; 7 8;9 10];
tr_1 = phytree(b,[.1 .2 .3 .3 .4]');
tr_2 = phytree(b,[.2 .1 .2 .3 .4]');

2 Plot the trees.

plot(tr_1)
plot(tr_2)

3 Check whether the trees have an isomorphic construction.

isequal(getcanonical(tr_1),getcanonical(tr_2))

4-22

getcanonical (phytree)

ans =
1

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreeread

• phytree object methods — getbyname, select, subtree

4-23

getdescendants (biograph)

Purpose Find descendants in biograph object

Syntax Nodes = getdescendants(BiographNode)
Nodes = getdescendants(BiographNode,NumGenerations)

Arguments
BiographNode Node in a biograph object.

NumGenerations Number of generations. Enter a positive integer.

Description Nodes = getdescendants(BiographNode) finds a given node
(BiographNode) all of its direct descendants.

Nodes = getdescendants(BiographNode,NumGenerations) finds the
node (BiographNode) and all of its direct descendants up to a specified
number of generations (NumGenerations).

Examples 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg = biograph(cm)

2 Find one generation of descendants for node 4.

desNodes = getdescendants(bg.nodes(4));
set(desNodes,'Color',[1 .7 .7]);
bg.view;

4-24

getdescendants (biograph)

3 Find two generations of descendants for node 4.

desNodes = getdescendants(bg.nodes(4),2);
set(desNodes,'Color',[.7 1 .7]);
bg.view;

4-25

getdescendants (biograph)

See Also Bioinformatics Toolbox function: biograph (object constructor)

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: dolayout,
getancestors, getdescendants, getedgesbynodeid, getnodesbyid,
getrelatives, view

MATLAB functions: get, set

4-26

getdescendants (geneont)

Purpose Numeric IDs for descendants of Gene Ontology term

Syntax DescendantIDs = getdescendants(GeneontObj, ID)
DescendantIDs = getdescendants(..., 'Depth',
DepthValue,...)

Description DescendantIDs = getdescendants(GeneontObj, ID)returns the
numeric IDs (DescendantIDs) for the descendants of a term (ID)
including the ID for the term. ID is a nonnegative integer or a numeric
vector with a set of IDs.

DescendantIDs = getdescendants(..., 'PropertyName',
PropertyValue,...) defines optional properties using property
name/value pairs.

DescendantIDs = getdescendants(..., 'Depth',
DepthValue,...) searches down through a specified number
of levels (DepthValue) in the Gene Ontology. DepthValue is a positive
integer. Default is Inf.

Examples 1 Download the Gene Ontology database from the Web into MATLAB.

GO = geneont('LIVE', true);

MATLAB creates a geneont object and displays the number of terms
in the database.

Gene Ontology object with 20005 Terms.

2 Get the ancestors for a Gene Ontology term.

descendants = getdescendants(GO,5622, 'Depth', 5)

3 Create a sub Gene Ontology.

subontology = GO(descendants)

Gene Ontology object with 1071 Terms.

4-27

getdescendants (geneont)

See Also Bioinformatics Toolbox

• functions — geneont (object constructor), goannotread, num2goid

• geneont object methods — getancestors, getmatrix, getrelatives

4-28

getedgesbynodeid (biograph)

Purpose Get handles to edges in biograph object

Syntax Edges = getedgesbynodeid(BGobj,SourceIDs,SinkIDs)

Arguments
BGobj Biograph object.

SourceIDs,
SinkIDs

Enter a cell string, or an empty cell array (gets
all edges).

Description Edges = getedgesbynodeid(BGobj,SourceIDs,SinkIDs) gets the
handles to the edges that connect the specified source nodes (SourceIDs)
to the specified sink nodes (SinkIDs) in a biograph object.

Example 1 Create a biograph object for the Hominidae family.

species = {'Homo','Pan','Gorilla','Pongo','Baboon',...
'Macaca','Gibbon'};

cm = magic(7)>25 & 1-eye(7);
bg = biograph(cm, species);

2 Find all the edges that connect to the Homo node.

EdgesIn = getedgesbynodeid(bg,[],'Homo');
EdgesOut = getedgesbynodeid(bg,'Homo',[]);
set(EdgesIn,'LineColor',[0 1 0]);
set(EdgesOut,'LineColor',[1 0 0]);
bg.view;

3 Find all edges that connect members of the Cercopithecidae family to
members of the Hominidae family.

Cercopithecidae = {'Macaca','Baboon'};
Hominidae = {'Homo','Pan','Gorilla','Pongo'};
edgesSel = getedgesbynodeid(bg,Cercopithecidae,Hominidae);
set(bg.edges,'LineColor',[.5 .5 .5]);
set(edgesSel,'LineColor',[0 0 1]);

4-29

getedgesbynodeid (biograph)

bg.view;

See Also Bioinformatics Toolbox function: biograph (object constructor)

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: dolayout,
getancestors, getdescendants, getedgesbynodeid, getnodesbyid,
getrelatives, view

MATLAB functions: get, set

4-30

getmatrix (biograph)

Purpose Get connection matrix from biograph object

Syntax [Matrix, ID, Distances] = getmatrix(BGObj)

Arguments
BGObj biograph object created by biograph (object

constructor).

Description [Matrix, ID, Distances] = getmatrix(BGObj) converts the
biograph object, BiographObj, into a logical sparse matrix, Matrix, in
which 1 indicates that a node (row index) is connected to another node
(column index). ID is a cell array of strings listing the ID properties
for each node, and corresponds to the rows and columns of Matrix.
Distances is a column vector with one entry for every nonzero entry in
Matrix traversed column-wise and representing the respective Weight
property for each edge.

Examples cm = [0 1 1 0 0;2 0 0 4 4;4 0 0 0 0;0 0 0 0 2;4 0 5 0 0];
bg = biograph(cm);
[cm, IDs, dist] = getmatrix(bg)

See Also Bioinformatics Toolbox function: biograph (object constructor)

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: dolayout,
getancestors, getdescendants, getedgesbynodeid, getnodesbyid,
getrelatives, view

4-31

getmatrix (geneont)

Purpose Convert geneont object into relationship matrix

Syntax [Matrix, ID, Relationship] = getmatrix(GeneontObj)

Arguments
GeneontObj geneont object created by geneont (object constructor)

Description [Matrix, ID, Relationship] = getmatrix(GeneontObj) converts
a geneont object, GeneontObj, into Matrix, a matrix of relationship
values between nodes (row and column indices), in which 0 indicates
no relationship, 1 indicates an “is_a” relationship, and 2 indicates a
“part_of” relationship. ID is a column vector listing Gene Ontology IDs
that correspond to the rows and columns of Matrix. Relationship is a
cell array of strings defining the types of relationships.

Examples GO = geneont('LIVE',true);
[MATRIX, ID, REL] = getmatrix(GO);

See Also • Bioinformatics Toolbox functions — geneont (object constructor),
goannotread, num2goid

• Bioinformatics Toolbox object — geneont object

• Bioinformatics Toolbox methods of geneont object — getancestors,
getdescendants, getmatrix, getrelatives

4-32

getmatrix (phytree)

Purpose Convert phytree object into relationship matrix

Syntax [Matrix, ID, Distances] = getmatrix(PhytreeObj)

Arguments
PhytreeObj phytree object created by phytree (object constructor).

Description [Matrix, ID, Distances] = getmatrix(PhytreeObj) converts a
phytree object, PhytreeObj, into a logical sparse matrix, Matrix, in
which 1 indicates that a branch node (row index) is connected to its
child (column index). The child can be either another branch node or
a leaf node. ID is a column vector of strings listing the labels that
correspond to the rows and columns of Matrix, with the labels from 1 to
Number of Leaves being the leaf nodes, then the labels from Number
of Leaves + 1 to Number of Leaves + Number of Branches being the
branch nodes, and the label for the last branch node also being the root
node. Distances is a column vector with one entry for every nonzero
entry in Matrix traversed column-wise and representing the distance
between the branch node and the child.

Examples T = phytreeread('pf00002.tree')
[MATRIX, ID, DIST] = getmatrix(T);

See Also Bioinformatics Toolbox functions: phytree (object constructor),
phytreetool

Bioinformatics Toolbox object: phytree object

Bioinformatics Toolbox methods of phytree object: get, pdist, prune

4-33

getnewickstr (phytree)

Purpose Create Newick-formatted string

Syntax String = getnewickstr(Tree)
getnewickstr(..., 'PropertyName', PropertyValue,...)
getnewickstr(..., 'Distances', DistancesValue)
getnewickstr(..., 'BranchNames', BranchNamesValue)

Arguments
Tree Phytree object created with the function

phytree.

DistancesValue Property to control including or excluding
distances in the output. Enter either true
(include distances) or false (exclude distances).
Default is true.

BranchNamesValue Property to control including or excluding
branch names in the output. Enter either true
(include branch names) or false (exclude branch
names). Default is false.

Description String = getnewickstr(Tree) returns the Newick formatted string of
a phylogenetic tree object (Tree).

getnewickstr(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

getnewickstr(..., 'Distances', DistancesValue), when
DistancesValue is false, excludes the distances from the output.

getnewickstr(..., 'BranchNames', BranchNamesValue), when
BranchNamesValue is true, includes the branch names in the output.

References Information about the Newick tree format.

http://evolution.genetics.washington.edu/phylip/newicktree.html

4-34

http://evolution.genetics.washington.edu/phylip/newicktree.html

getnewickstr (phytree)

Examples 1 Create some random sequences.

seqs = int2nt(ceil(rand(10)*4));

2 Calculate pairwise distances.

dist = seqpdist(seqs,'alpha','nt');

3 Construct a phylogenetic tree.

tree = seqlinkage(dist);

4 Get the Newick string.

str = getnewickstr(tree)

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreeread,
phytreetool, phytreewrite, seqlinkage

• phytree object methods — get, getbyname, getcanonical

4-35

getnodesbyid (biograph)

Purpose Get handles to nodes

Syntax NodesHandles = getnodesbyid(BGobj,NodeIDs)

Arguments
BGobj Biograph object.

NodeIDs Enter a cell string of node identifications.

Description NodesHandles = getnodesbyid(BGobj,NodeIDs) gets the handles for
the specified nodes (NodeIDs) in a biograph object.

Example 1 Create a biograph object.

species = {'Homosapiens','Pan','Gorilla','Pongo','Baboon',...
'Macaca','Gibbon'};

cm = magic(7)>25 & 1-eye(7);
bg = biograph(cm, species)

2 Find the handles to members of the Cercopithecidae family and
members of the Hominidae family.

Cercopithecidae = {'Macaca','Baboon'};
Hominidae = {'Homosapiens','Pan','Gorilla','Pongo'};
CercopithecidaeNodes = getnodesbyid(bg,Cercopithecidae);
HominidaeNodes = getnodesbyid(bg,Hominidae);

3 Color the families differently and draw a graph.

See Also Bioinformatics Toolbox function: biograph (object constructor)

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: dolayout,
getancestors, getdescendants, getedgesbynodeid, getnodesbyid,
getrelatives, view

4-36

getnodesbyid (biograph)

MATLAB functions: get, set

4-37

getrelatives (biograph)

Purpose Find relatives in biograph object

Syntax Nodes = getrelatives(BiographNode)
Nodes = getrelatives(BiographNode,NumGenerations)

Arguments
BiographNode Node in a biograph object.

NumGenerations Number of generations. Enter a positive
integer.

Description Nodes = getrelatives(BiographNode) finds all the direct relatives
for a given node (BiographNode).

Nodes = getrelatives(BiographNode,NumGenerations) finds the
direct relatives for a given node (BiographNode) up to a specified
number of generations (NumGenerations).

Examples 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg = biograph(cm)

2 Find all nodes interacting with node 1.

intNodes = getrelatives(bg.nodes(1));
set(intNodes,'Color',[.7 .7 1]);
bg.view;

See Also Bioinformatics Toolbox function: biograph (object constructor)

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: dolayout,
getancestors, getdescendants, getedgesbynodeid, getnodesbyid,
getrelatives, view

MATLAB functions: get, set

4-38

getrelatives (geneont)

Purpose Numeric IDs for relatives of Gene Ontology term

Syntax RelativeIDs = getrelatives(GeneontObj, ID)
getrelatives(..., 'PropertyName', PropertyValue,...)
getrelatives(..., 'Height', HeightValue)
getrelatives(..., 'Depth', DepthValue)

Arguments
GeneontObj

ID

Description RelativeIDs = getrelatives(GeneontObj, ID) returns the numeric
IDs (RelativeIDs) for the relatives of a term (ID) including the ID for
the term. ID is a nonnegative integer or a numeric vector with a set
of IDs.

getrelatives(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

getrelatives(..., 'Height', HeightValue) includes terms that are
related up through a specified number of levels (HeightValue) in the
Gene Ontology database. HeightValue is a positive integer. Default is 1.

getrelatives(..., 'Depth', DepthValue) includes terms that are
related down through a specified number of levels (DepthValue) in the
Gene Ontology database. DepthValue is a positive integer. Default is 1.

Examples 1 Download the Gene Ontology database from the Web into MATLAB.

GO = geneont('LIVE', true);

MATLAB creates a geneont object and displays the number of terms
in the database.

Gene Ontology object with 20005 Terms.

2 Get the relatives for a Gene Ontology term.

4-39

getrelatives (geneont)

subontology = getrelatives(GO,46680)

See Also Bioinformatics Toolbox

• functions — geneont (object constructor), goannotread, num2goid

• geneont object methods — getancestors, getdescendants,
getmatrix

4-40

isdag (biograph)

Purpose Test for cycles in biograph object

Syntax isdag(BGObj)

Arguments
BGObj biograph object created by biograph (object constructor).

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

isdag(BGObj) returns logical 1 (true) if an N-by-N adjacency matrix
extracted from a biograph object, BGObj, is a directed acyclic graph
(DAG) and logical 0 (false) otherwise. In the N-by-N sparse matrix, all
nonzero entries indicate the presence of an edge.

References [1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: biograph (object constructor),
graphisdag

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object:
allshortestpaths, conncomp, isomorphism, isspantree, maxflow,
minspantree, shortestpath, topoorder, traverse

4-41

isomorphism (biograph)

Purpose Find isomorphism between two biograph objects

Syntax [Isomorphic, Map] = isomorphism(BGObj1, BGObj2)
[Isomorphic, Map] = isomorphism(BGObj1, BGObj2,'Directed',

DirectedValue)

Arguments
BGObj1 biograph object created by biograph (object

constructor).

BGObj2 biograph object created by biograph (object
constructor).

DirectedValue Property that indicates whether the graphs are
directed or undirected. Enter false when both
BGObj1 and BGObj2 produce undirected graphs. In
this case, the upper triangles of the sparse matrices
extracted from BGObj1 and BGObj2 are ignored.
Default is true, meaning that both graphs are
directed.

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

[Isomorphic, Map] = isomorphism(BGObj1, BGObj2) returns logical
1 (true) in Isomorphic if two N-by-N adjacency matrices extracted
from biograph objects BGObj1 and BGObj2 are isomorphic graphs, and
logical 0 (false) otherwise. A graph isomorphism is a 1-to-1 mapping of
the nodes in the graph from BGObj1 and the nodes in the graph from
BGObj2 such that adjacencies are preserved. Return value Isomorphic
is Boolean. When Isomorphic is true, Map is a row vector containing
the node indices that map from BGObj2 to BGObj1. When Isomorphic is
false, the worst-case time complexity is O(N!), where N is the number
of nodes.

4-42

isomorphism (biograph)

[Isomorphic, Map] = isomorphism(BGObj1,
BGObj2,'Directed', DirectedValue) indicates whether the graphs
are directed or undirected. Set DirectedValue to false when both
BGObj1 and BGObj2 produce undirected graphs. In this case, the upper
triangles of the sparse matrices extracted from BGObj1 and BGObj2 are
ignored. The default is true, meaning that both graphs are directed.

References [1] Fortin, S. (1996). The Graph Isomorphism Problem. Technical
Report, 96-20, Dept. of Computer Science, University of Alberta,
Edomonton, Alberta, Canada.

[2] McKay, B.D. (1981). Practical Graph Isomorphism. Congressus
Numerantium 30, 45-87.

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: biograph (object constructor),
graphisomorphism

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object:
allshortestpaths, conncomp, isdag, isspantree, maxflow,
minspantree, shortestpath, topoorder, traverse

4-43

isspantree (biograph)

Purpose Determine if tree created from biograph object is spanning tree

Syntax TF = isspantree(BGObj)

Arguments
BGObj biograph object created by biograph (object constructor).

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

TF = isspantree(BGObj) returns logical 1 (true) if the N-by-N
adjacency matrix extracted from a biograph object, BGObj, is a spanning
tree, and logical 0 (false) otherwise. A spanning tree must touch all the
nodes and must be acyclic. The lower triangle of the N-by-N adjacency
matrix represents an undirected graph, and all nonzero entries indicate
the presence of an edge.

References [1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: biograph (object constructor),
graphisspantree

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object:
allshortestpaths, conncomp, isdag, isomorphism, maxflow,
minspantree, shortestpath, topoorder, traverse

4-44

maxflow (biograph)

Purpose Calculate maximum flow and minimum cut in biograph object

Syntax [MaxFlow, FlowMatrix, Cut] = maxflow(BGObj, SNode, TNode)
[...] = maxflow(BGObj, SNode, TNode, ...'Capacity',
CapacityValue, ...)
[...] = maxflow(BGObj, SNode, TNode, ...'Method', MethodValue,

...)

Arguments
BGObj biograph object created by biograph (object

constructor).

SNode Node in a directed graph represented by an
N-by-N adjacency matrix extracted from
biograph object, BGObj.

TNode Node in a directed graph represented by an
N-by-N adjacency matrix extracted from
biograph object, BGObj.

4-45

maxflow (biograph)

CapacityValue Column vector that specifies custom
capacities for the edges in the N-by-N
adjacency matrix. It must have one entry
for every nonzero value (edge) in the N-by-N
adjacency matrix. The order of the custom
capacities in the vector must match the order
of the nonzero values in the N-by-N adjacency
matrix when it is traversed column-wise. By
default, maxflow gets capacity information
from the nonzero entries in the N-by-N
adjacency matrix.

MethodValue String that specifies the algorithm used
to find the minimal spanning tree (MST).
Choices are:
• 'Edmonds' — Uses the Edmonds and Karp

algorithm, the implementation of which
is based on a variation called the labeling
algorithm. Time complexity is O(N*E^2),
where N and E are the number of nodes and
edges respectively.

• 'Goldberg' — Default algorithm. Uses
the Goldberg algorithm, which uses the
generic method known as preflow-push.
Time complexity is O(N^2*sqrt(E)),
where N and E are the number of nodes and
edges respectively.

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

[MaxFlow, FlowMatrix, Cut] = maxflow(BGObj, SNode, TNode)
calculates the maximum flow of a directed graph represented by an
N-by-N adjacency matrix extracted from a biograph object, BGObj, from

4-46

maxflow (biograph)

node SNode to node TNode. Nonzero entries in the matrix determine
the capacity of the edges. Output MaxFlow is the maximum flow, and
FlowMatrix is a sparse matrix with all the flow values for every edge.
FlowMatrix(X,Y) is the flow from node X to node Y. Output Cut is
a logical row vector indicating the nodes connected to SNode after
calculating the minimum cut between SNode and TNode. If several
solutions to the minimum cut problem exist, then Cut is a matrix.

[...] = maxflow(BGObj, SNode, TNode, ...'PropertyName',
PropertyValue, ...) calls maxflow with optional properties that
use property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single
quotes and is case insensitive. These property name/property value
pairs are as follows:

[...] = maxflow(BGObj, SNode, TNode, ...'Capacity',
CapacityValue, ...) lets you specify custom capacities for the edges.
CapacityValue is a column vector having one entry for every nonzero
value (edge) in the N-by-N adjacency matrix. The order of the custom
capacities in the vector must match the order of the nonzero values in
the matrix when it is traversed column-wise. By default, graphmaxflow
gets capacity information from the nonzero entries in the matrix.

[...] = maxflow(BGObj, SNode, TNode, ...'Method',
MethodValue, ...) lets you specify the algorithm used to find the
minimal spanning tree (MST). Choices are:

• 'Edmonds' — Uses the Edmonds and Karp algorithm, the
implementation of which is based on a variation called the labeling
algorithm. Time complexity is O(N*E^2), where N and E are the
number of nodes and edges respectively.

• 'Goldberg' — Default algorithm. Uses the Goldberg algorithm,
which uses the generic method known as preflow-push. Time
complexity is O(N^2*sqrt(E)), where N and E are the number of
nodes and edges respectively.

4-47

maxflow (biograph)

References [1] Edmonds, J. and Karp, R.M. (1972). Theoretical improvements in
the algorithmic efficiency for network flow problems. Journal of the
ACM 19, 248-264.

[2] Goldberg, A.V. (1985). A New Max-Flow Algorithm. MIT Technical
Report MIT/LCS/TM-291, Laboratory for Computer Science, MIT.

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: biograph (object constructor),
graphmaxflow

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object:
allshortestpaths, conncomp, isdag, isomorphism, isspantree,
minspantree, shortestpath, topoorder, traverse

4-48

minspantree (biograph)

Purpose Find minimal spanning tree in biograph object

Syntax [Tree, pred] = minspantree(BGObj)
[Tree, pred] = minspantree(BGObj, R)
[Tree, pred] = minspantree(..., 'Method', MethodValue, ...)
[Tree, pred] = minspantree(..., 'Weights', WeightsValue, ...)

Arguments
BGObj biograph object created by biograph (object constructor).

R Scalar between 1 and the number of nodes.

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

[Tree, pred] = minspantree(BGObj) finds an acyclic subset of edges
that connects all the nodes in the undirected graph represented by an
N-by-N adjacency matrix extracted from a biograph object, BGObj, and
for which the total weight is minimized. Weights of the edges are all
nonzero entries in the lower triangle of the N-by-N sparse matrix.
Output Tree is a spanning tree represented by a sparse matrix. Output
pred is a vector containing the predecessor nodes of the minimal
spanning tree (MST), with the root node indicated by 0. The root node
defaults to the first node in the largest connected component. This
computation requires an extra call to the graphconncomp function.

[Tree, pred] = minspantree(BGObj, R) sets the root of the minimal
spanning tree to node R.

[Tree, pred] =
minspantree(..., 'PropertyName', PropertyValue, ...) calls
minspantree with optional properties that use property name/property
value pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotes and is case insensitive.
These property name/property value pairs are as follows:

4-49

minspantree (biograph)

[Tree, pred] = minspantree(..., 'Method', MethodValue, ...) lets
you specify the algorithm used to find the minimal spanning tree
(MST). Choices are:

• 'Kruskal' — Grows the minimal spanning tree (MST) one edge at a
time by finding an edge that connects two trees in a spreading forest
of growing MSTs. Time complexity is O(E+X*log(N)), where X is the
number of edges no longer than the longest edge in the MST, and N
and E are the number of nodes and edges respectively.

• 'Prim' — Default algorithm. Grows the minimal spanning tree
(MST) one edge at a time by adding a minimal edge that connects
a node in the growing MST with any other node. Time complexity
is O(E*log(N)), where N and E are the number of nodes and edges
respectively.

Note When the graph is unconnected, Prim’s algorithm returns only
the tree that contains R, while Kruskal’s algorithm returns an MST
for every component.

[Tree, pred] = minspantree(..., 'Weights', WeightsValue, ...) lets
you specify custom weights for the edges. WeightsValue is a column
vector having one entry for every nonzero value (edge) in the N-by-N
sparse matrix. The order of the custom weights in the vector must
match the order of the nonzero values in the N-by-N sparse matrix
when it is traversed column-wise. By default, minspantree gets weight
information from the nonzero entries in the N-by-N sparse matrix.

References [1] Kruskal, J.B. (1956). On the Shortest Spanning Subtree of a Graph
and the Traveling Salesman Problem. Proceedings of the American
Mathematical Society 7, 48-50.

[2] Prim, R. (1957). Shortest Connection Networks and Some
Generalizations. Bell System Technical Journal 36, 1389-1401.

4-50

minspantree (biograph)

[3] Siek, J.G. Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: biograph (object constructor),
graphminspantree

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object:
allshortestpaths, conncomp, isdag, isomorphism, isspantree,
maxflow, shortestpath, topoorder, traverse

4-51

pdist (phytree)

Purpose Calculate pair-wise patristic distances in phytree object

Syntax D = pdist(Tree)
[D,C] = pdist(Tree)
pdist(..., 'PropertyName', PropertyValue,...)
pdist(..., 'Nodes', NodeValue)
pdist(... , Squareform', SquareformValue)
pdist(..., 'Criteria', CriteriaValue)

Arguments
Tree Phylogenetic tree object created with the

phytree constructor function.

NodeValue Property to select the nodes. Enter either
'leaves' (default) or 'all'.

SquareformValue Property to control creating a square matrix.

Description D = pdist(Tree) returns a vector (D) containing the patristic distances
between every possible pair of leaf nodes a phylogenetic tree object
(Tree). The patristic distances are computed by following paths through
the branches of the tree and adding the patristic branch distances
originally created with seqlinkage.

The output vector D is arranged in the order ((2,1),(3,1),...,
(M,1),(3,2),...(M,3),.....(M,M-1)) (the lower-left triangle of the
full M-by-M distance matrix). To get the distance between the Ith and
Jth nodes (I > J), use the formula D((J-1)*(M-J/2)+I-J). M is the
number of leaves.

[D,C] = pdist(Tree) returns in C the index of the closest common
parent nodes for every possible pair of query nodes.

pdist(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

pdist(..., 'Nodes', NodeValue) indicates the nodes included in the
computation. When Node='leaves', the output is ordered as before, but
M is the total number of nodes in the tree (NumLeaves+NumBranches).

4-52

pdist (phytree)

pdist(... , Squareform', SquareformValue), when Squareform
is true, converts the output into a square formatted matrix, so that
D(I,J) denotes the distance between the Ith and the Jth nodes. The
output matrix is symmetric and has a zero diagonal.

pdist(..., 'Criteria', CriteriaValue) changes the criteria used
to relate pairs. C can be 'distance' (default) or 'levels'.

Examples 1 Get a phylogenetic tree from a file.

tr = phytreeread('pf00002.tree')

2 Calculate the tree distances between pairs of leaves.

dist = pdist(tr,'nodes','leaves','squareform',true)

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreeread,
phytreetool, seqlinkage, seqpdist

4-53

plot (phytree)

Purpose Draw phylogenetic tree

Syntax plot(Tree)
plot(Tree, ActiveBranches)
plot(..., 'Type', TypeValue)
plot(...,'Orientation', OrientationValue)
plot(...,'BranchLabels', BranchLabelsValue)
plot(...,'LeafLabels', LeafLabelsValue)
plot(...,'TerminalLabels', TerminalLabelsValue)

Arguments
Tree Phylogenetic tree object created with the

phytree constructor function.

ActiveBranches Branches veiwable in the figure window.

TypeValue Property to select a method for drawing
a phylogenetic tree. Enter 'square' ,
'angular', or 'radial'. The default value
is 'square'.

OrientationValue Property to orient a phylogram or cladogram
tree. Enter 'top', 'bottom', 'left', or
'right'. The default value is 'left'.

BranchLabelsValue Property to control displaying branch labels.
Enter either true or false. The default
value is false.

LeafLabelsValue Property to control displaying leaf labels.
Enter either true or false. The default
value is false.

TerminalLabels Property to control displaying terminal
labels. Enter either true or false. The
default value is false.

Description plot(Tree) draws a phylogenetic tree object into a MATLAB figure as
a phylogram. The significant distances between branches and nodes

4-54

plot (phytree)

are in the horizontal direction. Vertical distances have no significance
and are selected only for display purposes. Handles to graph elements
are stored in the figure field UserData so that you can easily modify
graphic properties.

plot(Tree, ActiveBranches) hides the nonactive branches and all
of their descendants. ActiveBranches is a logical array of size
numBranches x 1 indicating the active branches.

plot(..., 'Type', TypeValue) selects a method for drawing a
phylogenetic tree.

plot(...,'Orientation', OrientationValue) orients a phylogenetic
tree within a figure window. The Orientation property is valid only for
phylogram and cladogram trees.

plot(...,'BranchLabels', BranchLabelsValue) hides or displays
branch labels placed next to the branch node.

plot(...,'LeafLabels', LeafLabelsValue) hides or displays leaf labels
placed next to the leaf nodes.

plot(...,'TerminalLabels', TerminalLabelsValue) hides or displays
terminal labels. Terminal labels are placed over the axis tick labels and
ignored when Type= 'radial'.

H = plot(...) returns a structure with handles to the graph elements.

Examples tr = phytreeread('pf00002.tree')
plot(tr,'Type','radial')

Graph element properties can be modified as follows:

h=get(gcf,'UserData')
set(h.branchNodeLabels,'FontSize',6,'Color',[.5 .5 .5])

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreeread,
phytreetool, seqlinkage

4-55

plot (phytree)

• phytree object method — view

4-56

prune (phytree)

Purpose Remove branch nodes from phylogenetic tree

Syntax T2 = prune(T1, Nodes)
T2 = prune(T1, Nodes, 'Mode','Exclusive')

Arguments
T1 Phylogenetic object created with the phytree

constructor function.

Nodes Nodes to remove from tree.

Mode Property to control the method of pruning.
Enter either 'Inclusive' or 'Exclusive'. The
default value is 'Inclusive'.

Description T2 = prune(T1, Nodes)removes the nodes listed in the vector Nodes
from the tree T1. prune removes any branch or leaf node listed in Nodes
and all their descendants from the tree T1, and returns the modified
tree T2. The parent nodes are connected to the ’brothers’ as required.
Nodes in the tree are labeled as [1:numLeaves] for the leaves and as
[numLeaves+1:numLeaves+numBranches] for the branches. Nodes can
also be a logical array of size [numLeaves+numBranches x 1] indicating
the nodes to be removed.

T2 = prune(T1, Nodes, 'Mode','Exclusive')changes the property
(Mode) for pruning to 'Exclusive' and removes only the descendants
of the nodes listed in the vector Nodes. Nodes that do not have a
predecessor become leaves in the list Nodes. In this case, pruning is the
process of reducing a tree by turning some branch nodes into leaf nodes,
and removing the leaf nodes under the original branch.

Examples Load a phylogenetic tree created from a protein family

tr = phytreeread('pf00002.tree');
view(tr)

% To :

4-57

prune (phytree)

Remove all the ’mouse’ proteins

ind = getbyname(tr,'mouse');
tr = prune(tr,ind);
view(tr)

Remove potential outliers in the tree

[sel,sel_leaves] = select(tr,'criteria','distance',...
'threshold',.3,...
'reference','leaves',...
'exclude','leaves',...
'propagate','toleaves');

tr = prune(tr,~sel_leaves)
view(tr)

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreetool

• phytree object methods — select, get

4-58

reorder (phytree)

Purpose Reorder leaves of phylogenetic tree

Syntax Tree1Reordered = reorder(Tree1, Order)
[Tree1Reordered, OptimalOrder] = reorder(Tree1, Order,

'Approximate', ApproximateValue)
[Tree1Reordered, OptimalOrder] = reorder(Tree1, Tree2)

Arguments Tree1, Tree2 Phytree objects.

Order Vector with position indices for each leaf.

ApproximateValue Controls the use of the optimal leaf-ordering
calculation to find the closest order possible to
the suggested one without dividing the clades or
producing crossing branches. Enter true to use
the calculation. Default is false.

Return
Values

Tree1Reordered Phytree object with reordered leaves.

OptimalOrder Vector of position indices for each leaf in
Tree1Reordered, determined by the optimal
leaf-ordering calculation.

Description Tree1Reordered = reorder(Tree1, Order) reorders the leaves of the
phylogenetic tree Tree1, without modifying its structure and distances,
creating a new phylogenetic tree, Tree1Reordered. Order is a vector
of position indices for each leaf. If Order is invalid, that is, if it divides
the clades (or produces crossing branches), then reorder returns an
error message.

[Tree1Reordered, OptimalOrder] = reorder(Tree1, Order,
'Approximate', ApproximateValue) controls the use of the optimal
leaf-ordering calculation, which finds the best approximate order
closest to the suggested one, without dividing the clades or producing
crossing branches. Enter true to use the calculation and return

4-59

reorder (phytree)

Tree1Reordered, the reordered tree, and OptimalOrder, a vector of
position indices for each leaf in Tree1Reordered, determined by the
optimal leaf-ordering calculation. Default is false.

[Tree1Reordered, OptimalOrder] = reorder(Tree1, Tree2)
uses the optimal leaf-ordering calculation to reorder the leaves in
Tree1 such that it matches the order of leaves in Tree2 as closely as
possible, without dividing the clades or producing crossing branches.
Tree1Reordered is the reordered tree, and OptimalOrder is a vector
of position indices for each leaf in Tree1Reordered, determined by the
optimal leaf-ordering calculation

Examples Reordering Leaves Using a Valid Order

1 Create and view a phylogenetic tree.

b = [1 2; 3 4; 5 6; 7 8; 9 10];
tree = phytree(b)

Phylogenetic tree object with 6 leaves (5 branches)
view(tree)

2 Reorder the leaves on the phylogenetic tree, and then view the
reordered tree.

treeReordered = reorder(tree, [5, 6, 3, 4, 1, 2])
view(treeReordered)

Finding Best Approximate Order When Using an Invalid Order

1 Create a phylogenetic tree by reading a Newick-formatted tree file
(ASCII text file).

tree = phytreeread('pf00002.tree')
Phylogenetic tree object with 33 leaves (32 branches)

2 Create a row vector of the leaf names in alphabetical order.

[dummy,order] = sort(get(tree,'LeafNames'));

4-60

reorder (phytree)

3 Reorder the phylogenetic tree to match as closely as possible the row
vector of alphabetically ordered leaf names, without dividing the
clades or having crossing branches.

treeReordered = reorder(tree,order,'approximate',true)
Phylogenetic tree object with 33 leaves (32 branches)

4 View the original and the reordered phylogenetic trees.

view(tree)
view(treeReordered)

Reordering Leaves to Match Leaf Order in Another Phylogenetic
Tree

1 Create a phylogenetic tree by reading sequence data from a FASTA
file, calculating the pair-wise distances between sequences, and then
using the neighbor-joining method.

seqs = fastaread('pf00002.fa')

seqs =

33x1 struct array with fields:
Header
Sequence

dist = seqpdist(seqs,'method','jukes-cantor','indels','pair');
NJtree = seqneighjoin(dist,'equivar',seqs)

Phylogenetic tree object with 33 leaves (32 branches)

2 Create another phylogenetic tree from the same sequence data and
pair-wise distances between sequences, using the single linkage
method.

HCtree = seqlinkage(dist,'single',seqs)
Phylogenetic tree object with 33 leaves (32 branches)

4-61

reorder (phytree)

3 Use the optimal leaf-ordering calculation to reorder the leaves in
HCtree such that it matches the order of leaves in NJtree as closely
as possible, without dividing the clades or having crossing branches.

HCtree_reordered = reorder(HCtree,NJtree)
Phylogenetic tree object with 33 leaves (32 branches)

4 View the reordered phylogenetic tree and the tree used to reorder it.

view(HCtree_reordered)
view(NJtree)

See Also Bioinformatics Toolbox function: phytree (object constructor)

Bioinformatics Toolbox object: phytree object

Bioinformatics Toolbox methods of a phytree object: get, getbyname,
prune

4-62

reroot (phytree)

Purpose Change root of phylogenetic tree

Syntax Tree2 = reroot(Tree1)
Tree2 = reroot(Tree1, Node)
Tree2 = reroot(Tree1, Node, Distance)

Arguments
Tree1 Phylogenetic tree (phytree object) created with

the function phytree.

Node Node index returned by the phytree object
method getbyname.

Distance Distance from the reference branch.

Description Tree2 = reroot(Tree1) changes the root of a phylogenetic tree (Tree1)
using a midpoint method. The midpoint is the location where the mean
values of the branch lengths, on either side of the tree, are equalized.
The original root is deleted from the tree.

Tree2 = reroot(Tree1, Node) changes the root of a phylogenetic tree
(Tree1) to a branch node using the node index (Node). The new root is
placed at half the distance between the branch node and its parent.

Tree2 = reroot(Tree1, Node, Distance) changes the root of a
phylogenetic tree (Tree1) to a new root at a given distance (Distance)
from the reference branch node (Node) toward the original root of the
tree. Note: The new branch representing the root in the new tree
(Tree2) is labeled 'Root'.

Examples 1 Create an ultrametric tree.

tr_1 = phytree([5 7;8 9;6 11; 1 2;3 4;10 12;...
14 16; 15 17;13 18])

plot(tr_1,'branchlabels',true)

MATLAB draws a figure with the phylogenetic tree.

4-63

reroot (phytree)

2 Place the root at 'Branch 7'.

sel = getbyname(tr_1,'Branch 7');
tr_2 = reroot(tr_1,sel)
plot(tr_2,'branchlabels',true)

MATLAB draws a tree with the root moved to the center of branch 7.

4-64

reroot (phytree)

3 Move the root to a branch that makes the tree as ultrametric as
possible.

tr_3 = reroot(tr_2)
plot(tr_3,'branchlabels',true)

MATLAB draws the new tree with the root moved from the center
of branch 7 to branch 8.

4-65

reroot (phytree)

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), seqneighjoin

• phytree object methods — get, getbyname, prune, select

4-66

select (phytree)

Purpose Select tree branches and leaves in phytree object

Syntax S = select(Tree, N)
[S, Selleaves, Selbranches] = select(...)
select(..., 'PropertyName', PropertyValue,...)
select(..., 'Reference', ReferenceValue)
select(..., 'Criteria', CriteriaValue)
select(..., 'Threshold', ThresholdValue)
select(..., 'Exclude', ExcludeValue),
select(..., 'Propagate', PropagateValue)

Arguments
Tree Phylogenetic tree (phytree object) created with

the function phytree.

N Number of closest nodes to the root node.

ReferenceValue Property to select a reference point for
measuring distance.

CriteriaValue Property to select a criteria for measuring
distance.

ThresholdValue Property to select a distance value. Nodes with
distances below this value are selected.

ExcludeValue Property to remove (exclude) branch or
leaf nodes from the output. Enter 'none',
'branchs', or 'leaves'. The default value is
'none'.

PropagateValue Property to select propagating nodes toward
the leaves or the root.

Description S = select(Tree, N) returns a logical vector (S) of size [NumNodes
x 1] indicating the N closest nodes to the root node of a phytree
object (Tree) where NumNodes = NumLeaves + NumBranches. The first
criterion select uses is branch levels, then patristic distance (also

4-67

select (phytree)

known as tree distance). By default, select uses inf as the value of N,
and select(Tree) returns a vector with values of true.

[S, Selleaves, Selbranches] = select(...) returns two
additional logical vectors, one for the selected leaves and one for the
selected branches.

select(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

select(..., 'Reference', ReferenceValue) changes the reference
point(s) to measure the closeness. Reference can be the root (default)
or leaves. When using leaves, a node can have multiple distances to
its descendant leaves (nonultrametric tree). If this the case, select
considers the minimum distance to any descendant leaf.

select(..., 'Criteria', CriteriaValue) changes the criteria
select uses to measure closeness. If C = 'levels' (default), the
first criterion is branch levels and then patristic distance. If C =
'distance', the first criterion is patristic distance and then branch
levels.

select(..., 'Threshold', ThresholdValue) selects all the
nodes where closeness is less than or equal to the threshold value
(ThresholdValue). Notice, you can also use either of the properties
'criteria' or 'reference', if N is not specified, then N = infF;
otherwise you can limit the number of selected nodes by N.

select(..., 'Exclude', ExcludeValue), when ExcludeValue =
'branches', sets a postfilter that excludes all the branch nodes from S,
or when ExcludeValue = 'leaves', all the leaf nodes. The default is
'none'.

select(..., 'Propagate', PropagateValue) activates a
postfunctionality that propagates the selected nodes to the leaves when
P=='toleaves' or toward the root finding a common ancestor when P
== 'toroot'. The default value is 'none'. P may also be 'both'. The
'Propagate' property acts after the 'Exclude' property.

4-68

select (phytree)

Examples % Load a phylogenetic tree created from a protein family:
tr = phytreeread('pf00002.tree');

% To find close products for a given protein (e.g. vips_human):
ind = getbyname(tr,'vips_human');
[sel,sel_leaves] = select(tr,'criteria','distance',...

'threshold',0.6,'reference',ind);
view(tr,sel_leaves)

% To find potential outliers in the tree, use
[sel,sel_leaves] = select(tr,'criteria','distance',...

'threshold',.3,...
'reference','leaves',...
'exclude','leaves',...
'propagate','toleaves');

view(tr,~sel_leaves)

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreetool

• phytree object methods — get, pdist, prune

4-69

shortestpath (biograph)

Purpose Solve shortest path problem in biograph object

Syntax [dist, path, pred] = shortestpath(BGObj, S)
[dist, path, pred] = shortestpath(BGObj, S, T)
[...] = shortestpath(..., 'Directed', DirectedValue, ...)
[...] = shortestpath(..., 'Method', MethodValue, ...)
[...] = shortestpath(..., 'Weights', WeightsValue, ...)

Arguments
BGObj biograph object created by biograph (object

constructor).

S Node in graph represented by an N-by-N adjacency
matrix extracted from a biograph object, BGObj.

T Node in graph represented by an N-by-N adjacency
matrix extracted from a biograph object, BGObj.

DirectedValue Property that indicates whether the graph
represented by the N-by-N adjacency matrix
extracted from a biograph object, BGObj, is directed
or undirected. Enter false for an undirected graph.
This results in the upper triangle of the sparse
matrix being ignored. Default is true.

4-70

shortestpath (biograph)

MethodValue String that specifies the algorithm used to find the
shortest path. Choices are:
• 'Bellman-Ford' — Assumes weights of the edges

to be nonzero entries in the N-by-N adjacency
matrix. Time complexity is O(N*E), where N and
E are the number of nodes and edges respectively.

• 'BFS' — Breadth-first search. Assumes all
weights to be equal, and nonzero entries in the
N-by-N adjacency matrix to represent edges.
Time complexity is O(N+E), where N and E are the
number of nodes and edges respectively.

• 'Acyclic' — Assumes the graph represented by
the N-by-N adjacency matrix extracted from a
biograph object, BGObj, to be a directed acyclic
graph and that weights of the edges are nonzero
entries in the N-by-N adjacency matrix. Time
complexity is O(N+E), where N and E are the
number of nodes and edges respectively.

• 'Dijkstra' — Default algorithm. Assumes
weights of the edges to be positive values in the
N-by-N adjacency matrix. Time complexity is
O(log(N)*E), where N and E are the number of
nodes and edges respectively.

WeightsValue Column vector that specifies custom weights for
the edges in the N-by-N adjacency matrix extracted
from a biograph object, BGObj. It must have one
entry for every nonzero value (edge) in the N-by-N
adjacency matrix. The order of the custom weights
in the vector must match the order of the nonzero
values in the N-by-N adjacency matrix when it is
traversed column-wise. This property lets you use
zero-valued weights. By default, shortestpaths
gets weight information from the nonzero entries in
the N-by-N adjacency matrix.

4-71

shortestpath (biograph)

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

[dist, path, pred] = shortestpath(BGObj, S) determines the
single-source shortest paths from node S to all other nodes in the graph
represented by an N-by-N adjacency matrix extracted from a biograph
object, BGObj. Weights of the edges are all nonzero entries in the N-by-N
adjacency matrix. dist are the N distances from the source to every
node (using Infs for nonreachable nodes and 0 for the source node).
path contains the winning paths to every node. pred contains the
predecessor nodes of the winning paths.

[dist, path, pred] = shortestpath(BGObj, S, T) determines the
single source-single destination shortest path from node S to node T.

[...] = shortestpath(..., 'PropertyName',
PropertyValue, ...) calls shortestpath with optional
properties that use property name/property value pairs. You can
specify one or more properties in any order. Each PropertyName must
be enclosed in single quotes and is case insensitive. These property
name/property value pairs are as follows:

[...] = shortestpath(..., 'Directed', DirectedValue, ...)
indicates whether the graph represented by the N-by-N adjacency
matrix extracted from a biograph object, BGObj, is directed or
undirected. Set DirectedValue to false for an undirected graph. This
results in the upper triangle of the sparse matrix being ignored. Default
is true.

[...] = shortestpath(..., 'Method', MethodValue, ...) lets you
specify the algorithm used to find the shortest path. Choices are:

• 'Bellman-Ford' — Assumes weights of the edges to be nonzero
entries in the N-by-N adjacency matrix. Time complexity is O(N*E),
where N and E are the number of nodes and edges respectively.

4-72

shortestpath (biograph)

• 'BFS' — Breadth-first search. Assumes all weights to be equal, and
nonzero entries in the N-by-N adjacency matrix to represent edges.
Time complexity is O(N+E), where N and E are the number of nodes
and edges respectively.

• 'Acyclic' — Assumes the graph represented by the N-by-N
adjacency matrix extracted from a biograph object, BGObj, to be a
directed acyclic graph and that weights of the edges are nonzero
entries in the N-by-N adjacency matrix. Time complexity is O(N+E),
where N and E are the number of nodes and edges respectively.

• 'Dijkstra' — Default algorithm. Assumes weights of the edges to
be positive values in the N-by-N adjacency matrix. Time complexity
is O(log(N)*E), where N and E are the number of nodes and edges
respectively.

[...] = shortestpath(..., 'Weights', WeightsValue, ...) lets you
specify custom weights for the edges. WeightsValue is a column vector
having one entry for every nonzero value (edge) in the N-by-N adjacency
matrix extracted from a biograph object, BGObj. The order of the custom
weights in the vector must match the order of the nonzero values in
the N-by-N adjacency matrix when it is traversed column-wise. This
property lets you use zero-valued weights. By default, shortestpath
gets weight information from the nonzero entries in the N-by-N
adjacency matrix.

References [1] Dijkstra, E.W. (1959). A note on two problems in connexion with
graphs. Numerische Mathematik 1, 269-271.

[2] Bellman, R. (1958). On a Routing Problem. Quarterly of Applied
Mathematics 16(1), 87-90.

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: biograph (object constructor),
graphshortestpath

4-73

shortestpath (biograph)

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object:
allshortestpaths, conncomp, isdag, isomorphism, isspantree,
maxflow, minspantree, topoorder, traverse

4-74

subtree (phytree)

Purpose Extract phylogenetic subtree

Syntax Tree2 = subtree(Tree1, Nodes)

Description Tree2 = subtree(Tree1, Nodes) extracts a new subtree (Tree2)
where the new root is the first common ancestor of the Nodes vector
from Tree1. Nodes in the tree are indexed as [1:NUMLEAVES] for
the leaves and as [NUMLEAVES+1:NUMLEAVES+NUMBRANCHES] for
the branches. Nodes can also be a logical array of following sizes
[NUMLEAVES+NUMBRANCHES x 1], [NUMLEAVES x 1] or [NUMBRANCHES
x 1].

Examples 1 Load a phylogenetic tree created from a protein family.

tr = phytreeread('pf00002.tree')

2 Get the subtree that contains the VIPS and CGRR human proteins.

sel = getbyname(tr,{'vips_human','cgrr_human'});
sel = any(sel,2);
tr = subtree(tr,sel)
view(tr);

See Also Bioinformatics Toolbox

• functions — phytree (object constructor)

• phytree object methods — get, getbyname, prune, select

4-75

topoorder (biograph)

Purpose Perform topological sort of directed acyclic graph extracted from
biograph object

Syntax order = topoorder(BGObj)

Arguments
BGObj biograph object created by biograph (object constructor).

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

order = topoorder(BGObj) returns an index vector with the order
of the nodes sorted topologically. In topological order, an edge can
exist between a source node u and a destination node v, if and only
if u appears before v in the vector order. BGObj is a biograph object
from which an N-by-N adjacency matrix is extracted and represents a
directed acyclic graph (DAG). In the N-by-N sparse matrix, all nonzero
entries indicate the presence of an edge.

References [1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: biograph (object constructor),
graphtopoorder

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object:
allshortestpaths, conncomp, isdag, isomorphism, isspantree,
maxflow, minspantree, shortestpath, traverse

4-76

traverse (biograph)

Purpose Traverse biograph object by following adjacent nodes

Syntax [disc, pred, closed] = traverse(BGObj, S)
[...] = traverse(BGObj, S, ...'Depth', DepthValue, ...)
[...] = traverse(BGObj, S, ...'Directed', DirectedValue, ...)
[...] = traverse(BGObj, S, ...'Method', MethodValue, ...)

Arguments
BGObj biograph object created by biograph (object

constructor).

S Integer that indicates the source node in BGObj.

DepthValue Integer that indicates a node in BGObj that specifies
the depth of the search. Default is Inf (infinity).

DirectedValue Property that indicates whether graph represented
by an N-by-N adjacency matrix extracted from a
biograph object, BGObj is directed or undirected.
Enter false for an undirected graph. This results
in the upper triangle of the sparse matrix being
ignored. Default is true.

MethodValue String that specifies the algorithm used to traverse
the graph. Choices are:
• 'BFS' — Breadth-first search. Time complexity

is O(N+E), where N and E are number of nodes
and edges respectively.

• 'DFS' — Default algorithm. Depth-first search.
Time complexity is O(N+E), where N and E are
number of nodes and edges respectively.

Description
Tip For introductory information on graph theory functions, see “Graph
Theory Functions” in the Bioinformatics Toolbox documentation.

4-77

traverse (biograph)

[disc, pred, closed] = traverse(BGObj, S) traverses the directed
graph represented by an N-by-N adjacency matrix extracted from a
biograph object, BGObj, starting from the node indicated by integer S. In
the N-by-N sparse matrix, all nonzero entries indicate the presence of
an edge. disc is a vector of node indices in the order in which they are
discovered. pred is a vector of predecessor node indices (listed in the
order of the node indices) of the resulting spanning tree. closed is a
vector of node indices in the order in which they are closed.

[...] = traverse(BGObj, S, ...'PropertyName',
PropertyValue, ...) calls traverse with optional properties that
use property name/property value pairs. You can specify one or more
properties in any order. Each PropertyName must be enclosed in single
quotes and is case insensitive. These property name/property value
pairs are as follows:

[...] = traverse(BGObj, S, ...'Depth', DepthValue, ...) specifies
the depth of the search. DepthValue is an integer indicating a node in
the graph represented by the N-by-N adjacency matrix extracted from a
biograph object, BGObj. Default is Inf (infinity).

[...] = traverse(BGObj, S, ...'Directed', DirectedValue, ...)
indicates whether the graph represented by the N-by-N adjacency
matrix extracted from a biograph object, BGObj is directed or undirected.
Set DirectedValue to false for an undirected graph. This results in
the upper triangle of the sparse matrix being ignored. Default is true.

[...] = traverse(BGObj, S, ...'Method', MethodValue, ...) lets
you specify the algorithm used to traverse the graph represented by
the N-by-N adjacency matrix extracted from a biograph object, BGObj.
Choices are:

• 'BFS' — Breadth-first search. Time complexity is O(N+E), where N
and E are number of nodes and edges respectively.

• 'DFS' — Default algorithm. Depth-first search. Time complexity is
O(N+E), where N and E are number of nodes and edges respectively.

4-78

traverse (biograph)

References [1] Sedgewick, R., (2002). Algorithms in C++, Part 5 Graph Algorithms
(Addison-Wesley).

[2] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
Library User Guide and Reference Manual, (Upper Saddle River,
NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: biograph (object constructor),
graphtraverse

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object:
allshortestpaths, conncomp, isdag, isomorphism, isspantree,
maxflow, minspantree, shortestpath, topoorder

4-79

view (biograph)

Purpose Draw figure from biograph object

Syntax view(BGobj)
BGobjHandle = view(BGobj)

Arguments
BGobj Biograph object created with the function

biograph.

Description view(BGobj) opens a figure window and draws a graph represented by
a biograph object (BGobj). When the biograph object is already drawn in
the figure window, this function only updates the graph properties.

BGobjHandle = view(BGobj) returns a handle to a deep copy of the
biograph object (BGobj) in the figure window. When updating an
existing figure, you can use the returned handle to change object
properties programmatically or from the command line. When you close
the figure window, the handle is no longer valid. The original biograph
object (BGobj) is left unchanged.

Examples 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg = biograph(cm)

2 Render the biograph object into a Handles Graphic figure and get
back a handle.

h = view(bg)

3 Change the color of all nodes and edges.

set(h.Nodes,'Color',[.5 .7 1])
set(h.Edges,'LineColor',[0 0 0])

See Also Bioinformatics Toolbox function: biograph (object constructor)

Bioinformatics Toolbox object: biograph object

4-80

view (biograph)

Bioinformatics Toolbox methods of a biograph object: dolayout,
getancestors, getdescendants, getedgesbynodeid, getnodesbyid,
getrelatives, view

MATLAB functions: get, set

4-81

view (phytree)

Purpose View phylogenetic tree

Syntax view(Tree)
view(Tree, IntNodes)

Arguments
Tree Phylogenetic tree (phytree object) created with the

function phytree.

IntNodes Nodes from the phytree object to initially display in
the Tree.

Description view(Tree) opens the Phylogenetic Tree Tool window and draws a tree
from data in a phytree object (Tree). The significant distances between
branches and nodes are in the horizontal direction. Vertical distances
have no significance and are selected only for display purposes. You can
access tools to edit and analyze the tree from the Phylogenetic Tree Tool
menu bar or by using the left and right mouse buttons.

view(Tree, IntNodes) opens the Phylogenetic Tree Tool window with
an initial selection of nodes specified by IntNodes. IntNodes can be a
logical array of any of the following sizes: NumLeaves + NumBranches x
1, NumLeaves x 1, or NumBranches x 1. IntNodes can also be a list of
indices.

Example tree = phytreeread('pf00002.tree')
view(tree)

See Also Bioinformatics Toolbox functions: phytree (object constructor),
phytreeread, phytreetool, seqlinkage, seqneighjoin

Bioinformatics Toolbox object: phytree object

Bioinformatics Toolbox method of phytree object: plot

4-82

weights (phytree)

Purpose Calculate weights for phylogenetic tree

Syntax W = weights(Tree)

Arguments
Tree Phylogenetic tree (phytree object) created with

the function phytree.

Description W = weights(Tree) calculates branch proportional weights for every
leaf in a tree (Tree) using the Thompson-Higgins-Gibson method. The
distance of every segment of the tree is adjusted by dividing it by the
number of leaves it contains. The sequence weights are the result of
normalizing to unity the new patristic distances between every leaf
and the root.

Examples 1 Create an ultrametric tree with specified branch distances.

bd = [1 2 3]';
tr_1 = phytree([1 2;3 4;5 6],bd)

2 View the tree.

view(tr_1)

4-83

weights (phytree)

3 Display the calculated weights.

weights(tr_1)

ans =

1.0000
1.0000
0.8000
0.8000

References [1] Thompson JD, Higgins DG, Gibson TJ (1994), "CLUSTAL W:
Improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and weight
matrix choice," Nucleic Acids Research, 22(22):4673-4680.

[2] Henikoff S, Henikoff JG (1994), “Position-based sequence weights,”
Journal Molecular Biology, 243(4):574-578.

4-84

weights (phytree)

See Also Bioinformatics Toolbox

• functions — multialign, phytree (object constructor), profalign,
seqlinkage

4-85

5

Objects — Alphabetical List

biograph object

Purpose Data structure containing generic interconnected data used to
implement directed graph

Description A biograph object is a data structure containing generic interconnected
data used to implement a directed graph. Nodes represent proteins,
genes, or any other biological entity, and edges represent interactions,
dependences, or any other relationship between the nodes. A biograph
object also stores information, such as color properties and text label
characteristics, used to create a 2-D visualization of the graph.

You create a biograph object using the object constructor function
biograph. You can view a graphical representation of a biograph object
using the view method.

Method
Summary

Following are methods of a biograph object:

allshortestpaths (biograph) Find all shortest paths in
biograph object

conncomp (biograph) Find strongly or weakly connected
components in biograph object

dolayout (biograph) Calculate node positions and edge
trajectories

getancestors (biograph) Find ancestors in biograph object

getdescendants (biograph) Find descendants in biograph
object

getedgesbynodeid (biograph) Get handles to edges in biograph
object

getmatrix (biograph) Get connection matrix from
biograph object

getnodesbyid (biograph) Get handles to nodes

getrelatives (biograph) Find relatives in biograph object

isdag (biograph) Test for cycles in biograph object

5-2

biograph object

isomorphism (biograph) Find isomorphism between two
biograph objects

isspantree (biograph) Determine if tree created from
biograph object is spanning tree

maxflow (biograph) Calculate maximum flow and
minimum cut in biograph object

minspantree (biograph) Find minimal spanning tree in
biograph object

shortestpath (biograph) Solve shortest path problem in
biograph object

topoorder (biograph) Perform topological sort of
directed acyclic graph extracted
from biograph object

traverse (biograph) Traverse biograph object by
following adjacent nodes

view (biograph) Draw figure from biograph object

Following are methods of a node object:

getancestors (biograph) Find ancestors in biograph object

getdescendants (biograph) Find descendants in biograph
object

getrelatives (biograph) Find relatives in biograph object

Property
Summary

A biograph object contains two objects, node objects and edge objects,
that have their own properties. For a list of the properties of node
objects and edge objects, see the following tables.

5-3

biograph object

Properties of a Biograph Object

Property Description

ID String to identify the biograph object. Default
is ''. (This information is for bookkeeping
purposes only.)

Label String to label the biograph object. Default
is ''. (This information is for bookkeeping
purposes only.)

Description String that describes the biograph object.
Default is ''. (This information is for
bookkeeping purposes only.)

LayoutType String that specifies the algorithm for the
layout engine. Choices are:
• 'hierarchical' (default)

• 'equilibrium'

• 'radial'

EdgeType String that specifies how edges display. Choices
are:
• 'straight'

• 'curved' (default)

• 'segmented'

Note Curved or segmented edges occur only
when necessary to avoid obstruction by nodes.
Biograph objects with LayoutType equal to
'equilibrium' or 'radial' cannot produce
curved or segmented edges.

Scale Positive number that post-scales the node
coordinates. Default is 1.

5-4

biograph object

Property Description

LayoutScale Positive number that scales the size of the nodes
before calling the layout engine. Default is 1.

EdgeTextColor Three-element numeric vector of RGB values.
Default is [0, 0, 0], which defines black.

EdgeFontSize Positive number that sets the size of the edge
font in points. Default is 8.

ShowArrows Controls the display of arrows with the edges.
Choices are 'on' (default) or 'off'.

ArrowSize Positive number that sets the size of the arrows
in points. Default is 8.

ShowWeights Controls the display of text indicating the
weight of the edges. Choices are 'on' (default)
or 'off'.

ShowTextInNodes String that specifies the node property used to
label nodes when you display a biograph object
using the view method. Choices are:

• 'Label' — Uses the Label property of the
node object (default).

• 'ID' — Uses the ID property of the node
object.

• 'None'

5-5

biograph object

Property Description

NodeAutoSize Controls precalculating the node size before
calling the layout engine. Choices are 'on'
(default) or 'off'.

NodeCallback User-defined callback for all nodes. Enter
the name of a function, a function handle, or
a cell array with multiple function handles.
After using the view function to display the
biograph object in the Biograph Viewer, you can
double-click a node to activate the first callback,
or right-click and select a callback to activate.
Default is the anonymous function, @(node)
inspect(node), which displays the Property
Inspector dialog box.

EdgeCallback User-defined callback for all edges. Enter
the name of a function, a function handle, or
a cell array with multiple function handles.
After using the view function to display the
biograph object in the Biograph Viewer, you
can double-click an edge to activate the first
callback, or right-click and select a callback to
activate. Default is the anonymous function,
@(edge) inspect(edge), which displays the
Property Inspector dialog box.

CustomNodeDrawFcn Function handle to customized function to draw
nodes. Default is [].

5-6

biograph object

Property Description

Nodes Read-only column vector with handles to node
objects of a biograph object. The size of the
vector is the number of nodes. For properties of
node objects, see Properties of a Node Object
on page 5-7.

Edges Read-only column vector with handles to edge
objects of a biograph object. The size of vector
is the number of edges. For properties of edge
objects, see Properties of an Edge Object on
page 5-9.

Properties of a Node Object

Property Description

ID Read-only string defined when the biograph object
is created, either by the NodeIDs input argument
or internally by the biograph constructor function.
Each node object’s ID is unique and used internally
to identify the node.

Label String for labeling a node when you display a
biograph object using the view method. Default is
the ID property of the node object.

Description String that describes the node. Default is ''. (This
information is for bookkeeping purposes only.)

Position Two-element numeric vector of x- and y-coordinates,
for example, [150, 150]. If you do not specify this
property, default is initially [], then when the layout
algorithms are executed, it becomes a two-element
numeric vector of x- and y-coordinates computed by
the layout engine.

5-7

biograph object

Property Description

Shape String that specifies the shape of the nodes. Choices
are:
• 'box'(default)

• 'ellipse'

• 'circle'

• 'rectangle'

• 'diamond'

• 'trapezium'

• 'invtrapezium'

• 'house'

• 'inverse'

• 'parallelogram'

Size Two-element numeric vector calculated before
calling the layout engine using the actual font size
and shape of the node. Default is [10, 10].

Color Three-element numeric vector of RGB values that
specifies the fill color of the node. Default is [1, 1,
0.7], which defines yellow.

LineWidth Positive number. Default is 1.

LineColor Three-element numeric vector of RGB values that
specifies the outline color of the node. Default is
[0.3, 0.3, 1], which defines blue.

FontSize Positive number that sets the size of the node font in
points. Default is 8.

5-8

biograph object

Property Description

TextColor Three-element numeric vector of RGB values that
specifies the color of the node labels. Default is [0,
0, 0], which defines black.

UserData Miscellaneous, user-defined data that you want to
associate with the node. The node does not use this
property, but you can access and specify it using the
get and set functions. Default is [].

Properties of an Edge Object

Property Description

ID Read-only string defined when the biograph object
is created, internally by the biograph constructor
function. Each edge object’s ID is unique and used
internally to identify the edge.

Label String for labeling an edge when you display a
biograph object using the view method. Default is
the ID property of the edge object.

Description String that describes the edge. Default is ''. (This
information is for bookkeeping purposes only.)

Weight Value that represents the weight (cost, distance,
length, or capacity) associated with the edge.
Default is 1.

LineWidth Positive number. Default is 1.

LineColor Three-element numeric vector of RGB values that
specifies the color of the edge. Default is [0.5, 0.5,
0.5], which defines gray.

UserData Miscellaneous, user-defined data that you want to
associate with the edge. The edge does not use this
property, but you can access and specify it using the
get and set functions. Default is [].

5-9

biograph object

Examples Accessing Properties of a Biograph Object

You can access properties of a biograph object, BGobj, by using either
of the following syntaxes:

PropertyValue = get(BGobj, 'PropertyName')

PropertyValue = BGobj.PropertyName

Accessing Allowed Values of Biograph Object Properties

You can access allowed values for any property that has a finite set of
choices by using the following syntax:

set(BGobj, 'PropertyName')

Specifying Properties of a Biograph Object

You can specify properties of a biograph object, BGobj, by using any
of the following syntaxes:

set(BGobj, 'PropertyName', PropertyValue)

BGobj.PropertyName = PropertyValue

See Also Bioinformatics Toolbox function: biograph (object constructor)

Bioinformatics Toolbox methods of a biograph object:
allshortestpaths, conncomp, dolayout, getancestors,
getdescendants, getedgesbynodeid, getmatrix, getnodesbyid,
getrelatives, isdag, isomorphism, isspantree, maxflow,
minspantree, shortestpath, topoorder, traverse, view

MATLAB functions: get, set

5-10

geneont object

Purpose Data structure containing Gene Ontology (GO) information

Description A geneont object is a data structure containing Gene Ontology
information. Gene Ontology terms can be explored and traversed
through “is_a” and “part_of” relationships.

Method
Summary

Following are methods of a geneont object:

getancestors (geneont) Numeric IDs for ancestors of
Gene Ontology term

getdescendants (geneont) Numeric IDs for descendants of
Gene Ontology term

getmatrix (geneont) Convert geneont object into
relationship matrix

getrelatives (geneont) Numeric IDs for relatives of Gene
Ontology term

Property
Summary

Properties of a geneont Object

Property Description

default_namespace Read-only string containing the namespace to
which terms are assigned.

format_version Read-only string containing the version of the
encoding of the OBO flat format file.

date Read-only string containing the date the OBO
file was last updated.

Terms Read-only column vector with handles to term
objects of a geneont object. For properties of
term objects, see Properties of Terms Objects
on page 5-12.

5-11

geneont object

Properties of Terms Objects

Property Description

id Numeric value that corresponds to the GO ID of
the GO term.

Tip You can use the num2goid function to convert
id to a GO ID string.

name String representing the name of the GO term.

ontology String limited to 'molecular function',
'biological process', or 'cellular
component'.

definition String that defines the GO term.

synonym Numeric array containing GO IDs of GO terms
that are synonyms of this GO term.

is_a Numeric array containing GO IDs of GO terms
that have an “is_a” relationship with this GO
term.

part_of Numeric array containing GO IDs that of GO
terms that have a “part_of” relationship with this
GO term.

obsolete Boolean value that indicates if the GO term is
obsolete (1) or not obsolete (0).

See Also Bioinformatics Toolbox functions: geneont (object constructor),
goannotread, num2goid

Bioinformatics Toolbox methods of geneont object: getancestors,
getdescendants, getmatrix, getrelatives

5-12

phytree object

Purpose Data structure containing phylogenetic tree

Description A phytree object is a data structure containing a phylogenetic tree.
Phylogenetic trees are binary rooted trees, which means that each
branch is the parent of two other branches, two leaves, or one branch
and one leaf. A phytree object can be ultrametric or nonultrametric.

Method
Summary

Following are methods of a phytree object:

get (phytree) Information about phylogenetic
tree object

getbyname (phytree) Branches and leaves from phytree
object

getcanonical (phytree) Calculate canonical form of
phylogenetic tree

getmatrix (phytree) Convert phytree object into
relationship matrix

getnewickstr (phytree) Create Newick-formatted string

pdist (phytree) Calculate pair-wise patristic
distances in phytree object

plot (phytree) Draw phylogenetic tree

prune (phytree) Remove branch nodes from
phylogenetic tree

reorder (phytree) Reorder leaves of phylogenetic
tree

reroot (phytree) Change root of phylogenetic tree

select (phytree) Select tree branches and leaves
in phytree object

subtree (phytree) Extract phylogenetic subtree

5-13

phytree object

view (phytree) View phylogenetic tree

weights (phytree) Calculate weights for
phylogenetic tree

Property
Summary Note You cannot modify these properties directly. You can access these

properties using the get method.

Property Description

NumLeaves Number of leaves

NumBranches Number of branches

NumNodes Number of nodes (NumLeaves + NumBranches)

Pointers Branch to leaf/branch connectivity list

Distances Edge length for every leaf/branch

LeafNames Names of the leaves

BranchNames Names of the branches

NodeNames Names of all the nodes

See Also Bioinformatics Toolbox functions: phytree (object constructor),
phytreeread, phytreetool, phytreewrite, seqlinkage,
seqneighjoin, seqpdist

Bioinformatics Toolbox methods of phytree object: get, getbyname,
getcanonical, getmatrix, getnewickstr, pdist, plot, prune, reroot,
select, subtree, view, weights

5-14

Index

IndexA
aa2int function

reference 2-2
aa2nt function

reference 2-5
aacount function

reference 2-10
affyinvarsetnorm function

reference 2-14
affyprobeaffinities function

reference 2-22
affyprobeseqread function

reference 2-29
affyread function

reference 2-34
agferead function

reference 2-53
allshortestpaths method

reference 4-2
aminolookup function

reference 2-55
atomiccomp function

reference 2-60

B
basecount function

reference 2-62
baselookup function

reference 2-66
biograph constructor

reference 2-69
biograph object

reference 5-2
blastncbi function

reference 2-79
blastread function

reference 2-93
blosum function

reference 2-98

C
celintensityread function

reference 2-100
classperf function

reference 2-105
cleave function

reference 2-109
clustergram function

reference 2-112
codonbias function

reference 2-123
codoncount function

reference 2-126
conncomp method

reference 4-5
cpgisland function

reference 2-130
crossvalind function

reference 2-133

D
dayhoff function

reference 2-136
dimercount function

reference 2-137
dna2rna function

reference 2-140
dnds function

reference 2-141
dndsml function

reference 2-148
dolayout method

reference 4-8

E
emblread function

reference 2-153
evalrasmolscript function

Index-1

Index

reference 2-156
exprprofrange function

reference 2-158
exprprofvar function

reference 2-159

F
fastaread function

reference 2-160
fastawrite function

reference 2-163
featuresmap

reference 2-165
featuresparse

reference 2-175
functions

aa2int 2-2
aa2nt 2-5
aacount 2-10
affyinvarsetnorm 2-14
affyprobeaffinities 2-22
affyprobeseqread 2-29
affyread 2-34
agferead 2-53
aminolookup 2-55
atomiccomp 2-60
basecount 2-62
baselookup 2-66
biograph constructor 2-69
blastncbi 2-79
blastread 2-93
blosum 2-98
celintensityread 2-100
classperf 2-105
cleave 2-109
clustergram 2-112
codonbias 2-123
codoncount 2-126
cpgisland 2-130

crossvalind 2-133
dayhoff 2-136
dimercount 2-137
dna2rna 2-140
dnds 2-141
dndsml 2-148
emblread 2-153
evalrasmolscript 2-156
exprprofrange 2-158
exprprofvar 2-159
fastaread 2-160
fastawrite 2-163
featuresmap 2-165
featuresparse 2-175
galread 2-181
gcrma 2-182
gcrmabackadj 2-191
genbankread 2-200
geneentropyfilter 2-202
genelowvalfilter 2-204
geneont 2-206
generangefilter 2-209
geneticcode 2-211
genevarfilter 2-213
genpeptread 2-215
geosoftread 2-218
getblast 2-220
getembl 2-226
getgenbank 2-229
getgenpept 2-232
getgeodata 2-235
gethmmalignment 2-237
gethmmprof 2-241
gethmmtree 2-246
getpdb 2-248
goannotread 2-255
gonnet 2-257
gprread 2-258
graphallshortestpaths 2-261
graphconncomp 2-268

Index-2

Index

graphisdag 2-275
graphisomorphism 2-281
graphisspantree 2-288
graphmaxflow 2-290
graphminspantree 2-298
graphpred2path 2-304
graphshortestpath 2-308
graphtopoorder 2-320
graphtraverse 2-324
hmmprofalign 2-333
hmmprofestimate 2-336
hmmprofgenerate 2-339
hmmprofmerge 2-341
hmmprofstruct 2-343
imageneread 2-349
int2aa 2-352
int2nt 2-355
isoelectric 2-358
jcampread 2-361
joinseq 2-364
knnclassify 2-365
knnimpute 2-372
maboxplot 2-376
mafdr 2-379
magetfield 2-386
maimage 2-387
mainvarsetnorm 2-389
mairplot 2-397
maloglog 2-405
malowess 2-407
manorm 2-409
mapcaplot 2-412
mattest 2-415
mavolcanoplot 2-421
molviewer 2-429
molweight 2-428
msalign 2-437
msbackadj 2-451
msdotplot 2-456
msheatmap 2-462

mslowess 2-472
msnorm 2-477
mspalign 2-481
mspeaks 2-491
msppresample 2-504
msresample 2-512
mssgolay 2-516
msviewer 2-518
multialign 2-521
multialignread 2-530
multialignviewer 2-532
mzxml2peaks 2-533
mzxmlread 2-536
nmercount 2-539
nt2aa 2-540
nt2int 2-545
ntdensity 2-547
nuc44 2-549
num2goid 2-550
nwalign 2-551
oligoprop 2-558
optimalleaforder 2-567
palindromes 2-571
pam 2-573
pdbdistplot 2-575
pdbread 2-577
pdbwrite 2-584
pfamhmmread 2-587
phytree constructor 2-588
phytreeread 2-592
phytreetool 2-593
phytreewrite 2-595
probelibraryinfo 2-597
probesetlink 2-599
probesetlookup 2-602
probesetplot 2-604
probesetvalues 2-609
profalign 2-612
proteinplot 2-615
proteinpropplot 2-618

Index-3

Index

quantilenorm 2-624
ramachandran 2-625
randfeatures 2-627
randseq 2-630
rankfeatures 2-633
rebasecuts 2-638
redgreencmap 2-640
restrict 2-642
revgeneticcode 2-645
rmabackadj 2-649
rmasummary 2-654
rna2dna 2-658
samplealign 2-659
scfread 2-678
seq2regexp 2-681
seqcomplement 2-684
seqconsensus 2-685
seqdisp 2-687
seqdotplot 2-689
seqinsertgaps 2-691
seqlinkage 2-694
seqlogo 2-696
seqmatch 2-703
seqneighjoin 2-704
seqpdist 2-707
seqprofile 2-718
seqrcomplement 2-721
seqreverse 2-722
seqshoworfs 2-723
seqshowwords 2-728
seqtool 2-731
seqwordcount 2-733
showalignment 2-735
showhmmprof 2-738
sptread 2-740
svmclassify 2-742
svmsmoset 2-749
svmtrain 2-753
swalign 2-769
traceplot 2-776

zonebackadj 2-777

G
galread function

reference 2-181
gcrma function

reference 2-182
gcrmabackadj function

reference 2-191
genbankread function

reference 2-200
geneentropyfilter function

reference 2-202
genelowvalfilter function

reference 2-204
geneont function

reference 2-206
geneont object

reference 5-11
generangefilter function

reference 2-209
geneticcode function

reference 2-211
genevarfilter function

reference 2-213
genpeptread function

reference 2-215
geosoftread function

reference 2-218
get method

reference 4-11
getancestors method

biograph object 4-13
geneont object 4-16

getblast function
reference 2-220

getbyname method
reference 4-20

getcanonical method

Index-4

Index

reference 4-22
getdescendants method

biograph object 4-24
geneont object 4-27

getedgesbynodeid method
reference 4-29

getembl function
reference 2-226

getgenbank function
reference 2-229

getgenpept function
reference 2-232

getgeodata function
reference 2-235

gethmmalignment function
reference 2-237

gethmmprof function
reference 2-241

gethmmtree function
reference 2-246

getmatrix (biograph) method
reference 4-31

getmatrix (geneont) method
reference 4-32

getmatrix (phytree) method
reference 4-33

getnewickstr method
reference 4-34

getnodesbyid method
reference 4-36

getpdb function
reference 2-248

getrelatives method
biograph object 4-38
geneont object 4-39

goannotread function
reference 2-255

gonnet function
reference 2-257

gprread function

reference 2-258
graphallshortestpaths function

reference 2-261
graphconncomp function

reference 2-268
graphisdag function

reference 2-275
graphisomorphism function

reference 2-281
graphisspantree function

reference 2-288
graphmaxflow function

reference 2-290
graphminspantree function

reference 2-298
graphpred2path function

reference 2-304
graphshortestpath function

reference 2-308
graphtopoorder function

reference 2-320
graphtraverse function

reference 2-324

H
hmmprofalign function

reference 2-333
hmmprofestimate function

reference 2-336
hmmprofgenerate function

reference 2-339
hmmprofmerge function

reference 2-341
hmmprofstruct function

reference 2-343

I
imageneread function

Index-5

Index

reference 2-349
int2aa function

reference 2-352
int2nt function

reference 2-355
isdag method

reference 4-41
isoelectric function

reference 2-358
isomorphism method

reference 4-42
isspantree method

reference 4-44

J
jcampread function

reference 2-361
joinseq function

reference 2-364

K
knnclassify function

reference 2-365
knnimpute function

reference 2-372

M
maboxplot function

reference 2-376
mafdr function

reference 2-379
magetfield function

reference 2-386
maimage function

reference 2-387
mainvarsetnorm function

reference 2-389
mairplot function

reference 2-397
maloglog function

reference 2-405
malowess function

reference 2-407
manorm function

reference 2-409
mapcaplot function

reference 2-412
mattest function

reference 2-415
mavolcanoplot function

reference 2-421
maxflow method

reference 4-45
methods

allshortestpaths 4-2
conncomp 4-5
dolayout 4-8
get 4-11
getancestors (biograph) 4-13
getancestors (geneont) 4-16
getbyname 4-20
getcanonical 4-22
getdescendants (biograph) 4-24
getdescendants (geneont) 4-27
getedgesbynodeid 4-29
getmatrix (biograph) 4-31
getmatrix (geneont) 4-32
getmatrix (phytree) 4-33
getnewickstr 4-34
getnodesbyid 4-36
getrelatives (biograph) 4-38
getrelatives (geneont) 4-39
isdag 4-41
isomorphism 4-42
isspantree 4-44
maxflow 4-45
minspantree 4-49
pdist 4-52

Index-6

Index

plot 4-54
prune 4-57
reorder 4-59
reroot 4-63
select 4-67
shortestpath 4-70
subtree 4-75
topoorder 4-76
traverse 4-77
view (biograph) 4-80
view (phytree) 4-82
weights 4-83

minspantree method
reference 4-49

molviewer function
reference 2-429

molweight function
reference 2-428

msalign function
reference 2-437

msbackadj function
reference 2-451

msdotplot function
reference 2-456

msheatmap function
reference 2-462

mslowess function
reference 2-472

msnorm function
reference 2-477

mspalign function
reference 2-481

mspeaks function
reference 2-491

msppresample function
reference 2-504

msresample function
reference 2-512

mssgolay function
reference 2-516

msviewer function
reference 2-518

multialign function
reference 2-521

multialignread function
reference 2-530

multialignviewer function
reference 2-532

mzxml2peaks function
reference 2-533

mzxmlread function
reference 2-536

N
nmercount function

reference 2-539
nt2aa function

reference 2-540
nt2int function

reference 2-545
ntdensity function

reference 2-547
nuc44 function

reference 2-549
num2goid function

reference 2-550
nwalign function

reference 2-551

O
objects

biograph 5-2
geneont 5-11
phytree 5-13

oligoprop function
reference 2-558

optimalleaforder function
reference 2-567

Index-7

Index

P
palindromes function

reference 2-571
pam function

reference 2-573
pdbdistplot function

reference 2-575
pdbread function

reference 2-577
pdbwrite function

reference 2-584
pdist method

reference 4-52
pfamhmmread function

reference 2-587
phytree constructor

reference 2-588
phytree object

reference 5-13
phytreeread function

reference 2-592
phytreetool function

reference 2-593
phytreewrite function

reference 2-595
plot method

reference 4-54
probelibraryinfo function

reference 2-597
probesetlink function

reference 2-599
probesetlookup function

reference 2-602
probesetplot function

reference 2-604
probesetvalues function

reference 2-609
profalign function

reference 2-612
proteinplot function

reference 2-615
proteinpropplot function

reference 2-618
prune method

reference 4-57

Q
quantilenorm function

reference 2-624

R
ramachandran function

reference 2-625
randfeatures function

reference 2-627
randseq function

reference 2-630
rankfeatures function

reference 2-633
rebasecuts function

reference 2-638
redgreencmap function

reference 2-640
reorder method

reference 4-59
reroot method

reference 4-63
restrict function

reference 2-642
revgeneticcode function

reference 2-645
rmabackadj function

reference 2-649
rmasummary function

reference 2-654
rna2dna function

reference 2-658

Index-8

Index

S
samplealign function

reference 2-659
scfread function

reference 2-678
select method

reference 4-67
seq2regexp function

reference 2-681
seqcomplement function

reference 2-684
seqconsensus function

reference 2-685
seqdisp function

reference 2-687
seqdotplot function

reference 2-689
seqinsertgaps function

reference 2-691
seqlinkage function

reference 2-694
seqlogo function

reference 2-696
seqmatch function

reference 2-703
seqneighjoin function

reference 2-704
seqpdist function

reference 2-707
seqprofile function

reference 2-718
seqrcomplement function

reference 2-721
seqreverse function

reference 2-722
seqshoworfs function

reference 2-723
seqshowwords function

reference 2-728
seqtool function

reference 2-731
seqwordcount function

reference 2-733
shortestpath method

reference 4-70
showalignment function

reference 2-735
showhmmprof function

reference 2-738
sptread function

reference 2-740
subtree method

reference 4-75
svmclassify function

reference 2-742
svmsmoset function

reference 2-749
svmtrain function

reference 2-753
swalign function

reference 2-769

T
topoorder method

reference 4-76
traceplot function

reference 2-776
traverse method

reference 4-77

V
view (biograph) method

reference 4-80
view (phytree) method

reference 4-82

W
weights method

Index-9

Index

reference 4-83

Z
zonebackadj function

reference 2-777

Index-10

	toc
	Functions — By Category
	Constructor
	Data Formats and Databases
	Trace Tools
	Sequence Conversion
	Sequence Utilities
	Sequence Statistics
	Sequence Visualization
	Pair-wise Sequence Alignment
	Multiple Sequence Alignment
	Scoring Matrices
	Phylogenetic Tree Tools
	Graph Theory
	Gene Ontology
	Protein Analysis
	Profile Hidden Markov Models
	Microarray File Formats
	Microarray Utility
	Microarray Data Analysis and Visualization
	Microarray Normalization and Filtering
	Statistical Learning
	Mass Spectrometry File Formats, Preprocessing, and Visualization

	Functions — Alphabetical List
	Converting a Simple Sequence
	Converting a Random Sequence
	Estimating Synonymous and Nonsynonymous Substitution Rates Betwe
	Estimating Synonymous and Nonsynonymous Substitution Rates Betwe
	Estimating Synonymous and Nonsynonymous Substitution Rates Betwe
	Estimating Synonymous and Nonsynonymous Substitution Rates Betwe
	Creating a Circular Map with Legend
	Creating a Linear Map with Sequence Position Labels and Changed
	Determining Qualifiers for a Specific Feature
	Obtaining All Features from a GenBank File
	Obtaining a Subset of Features from a GenBank Record
	Extracting Sequences for Each Feature
	Finding All Shortest Paths in a Directed Graph
	Finding All Shortest Paths in an Undirected Graph
	Testing for Cycles in Directed Graphs
	Testing for Cycles in a Very Large Graph (Greater Than 20,000 No
	Creating a Random DAG
	Finding the Shortest Path in a Directed Graph
	Finding the Shortest Path in an Undirected Graph
	Classifying Rows
	Classifying Rows into One of Two Groups
	Classifying Rows Using the Three Nearest Neighbors
	Aligning Mass Spectrum with Three or More Reference Peaks
	Aligning Mass Spectrum with One Reference Peak
	SELDI-TOF Data
	Liquid Chromatography/Mass Spectrometry (LC/MS) Data
	Calculating Properties for a DNA Sequence
	Calculating Properties for a DNA Sequence with Ambiguous Charact
	Plotting Hydrophobicity
	Plotting Parallel Beta Strand
	Warping a sine wave with a smooth function to more closely follo
	Recovering a nonlinear warping between two signals containing no
	Displaying a Sequence Logo for a Nucleotide Sequence
	Displaying a Sequence Logo for an Amino Acid Sequence

	Methods — By Category
	Phylogenetic Tree
	Graph Visualization
	Gene Ontology

	Methods — Alphabetical List
	Reordering Leaves Using a Valid Order
	Finding Best Approximate Order When Using an Invalid Order
	Reordering Leaves to Match Leaf Order in Another Phylogenetic Tr

	Objects — Alphabetical List
	Accessing Properties of a Biograph Object
	Accessing Allowed Values of Biograph Object Properties
	Specifying Properties of a Biograph Object

	Index

	tables
	Mapping Amino Acid Letters to Integers
	Genetic Code
	Standard Genetic Code
	All File Types (EXP, DAT, CEL, CHP, CDF, and GIN)
	EXP File
	DAT File
	CEL File
	CHP File
	CDF File
	GIN File
	Amino Acid Lookup
	Nucleotide Lookup Table
	Choices for Optional Properties by BLAST Program
	Choices for the GapOpen Property by Matrix
	Genetic Code
	Mapping Amino Acid Integers to Letters
	Mapping Nucleotide Integers to Letters
	Genetic Code
	Mapping Nucleotide Letters to Integers
	Genetic Code
	Nucleotide Conversions
	Amino Acid Conversion
	Color Code for Nucleotides
	Color Code for Amino Acids
	Methods for Nucleotides and Amino Acids
	Methods with No Scoring of Gaps (Nucleotides Only)
	Methods with No Scoring of Gaps (Amino Acids Only)
	Properties of a Biograph Object
	Properties of a Node Object
	Properties of an Edge Object
	Properties of a geneont Object
	Properties of Terms Objects

